Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 653: 123886, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38331330

ABSTRACT

Dandruff, or pityriasis capitis simplex, is a common scalp condition associated with excessive flaking and scaling of the epidermal tissue. Other features include irregular corneocyte turnover, irritation, itching and an impaired skin barrier function. Previously we reported the characterization of climbazole (CBZ), an antifungal agent used in the management of dandruff. Skin permeation of CBZ from neat solvents was also investigated. In the present work we evaluated CBZ permeation in human skin in vitro from more complex formulations that better represent products used by consumers. The various systems studied were composed of propylene glycol (PG), Transcutol®P (TC), octyl salicylate (OSal) and isopropyl alcohol (IPA). As well as measurement of skin uptake and penetration of CBZ, where possible, the skin retention and permeation of the various solvents was also determined. All vehicles promoted skin permeation of CBZ but no significant differences in amount permeated were evident between the binary vehicles (PG:TC, TC:OSal) and the ternary vehicle studied (PG:IPA:OSal). The binary vehicles generally promoted more skin uptake of CBZ compared with the neat solvents (PG, TC, OSal) studied previously. Permeation and skin extraction of CBZ from the PG:TC vehicles increased with increasing PG content; a similar trend was evident for the PG:IPA:OSal systems. New methods were developed and validated for measurement of PG, TC and OSal. Analysis of the individual solvents indicated that PG permeation was also independent of the amounts of other solvents in the binary or ternary systems. Consistent with previous findings higher proportions of TC permeated compared with PG for the PG:TC binary systems; TC also permeated the skin more rapidly than PG from these vehicles. For OSal, skin extraction was generally higher for TC:OSal compared with the PG:IPA:OSal vehicle. However, increasing the content of OSal did not appear to influence CBZ skin uptake nor permeation. Interestingly, the effects of the various PG:TC vehicles on CBZ skin delivery contrast with results we previous reported for the same systems for a different active. This confirms that with reference to skin permeation, formulation effects and/or skin penetration enhancement should be expected to vary and may not be predicted for specific vehicles.


Subject(s)
Dandruff , Imidazoles , Humans , Administration, Cutaneous , Skin , Solvents , Propylene Glycol , 2-Propanol , Permeability
2.
Int J Cosmet Sci ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38083900

ABSTRACT

OBJECTIVE: Disruption of the protective stratum corneum barrier increases the skin's vulnerability to microorganisms and facilitates conditions such as dandruff. Dandruff is a disorder of the scalp that causes increased scaling of the SC and is associated with Malassezia fungus. Consequently, many anti-dandruff commercial products use anti-fungal active ingredients such as piroctone olamine also known as Octopirox (OPX). OPX is an active ingredient used in a number of topical preparations for the management of dandruff. The characterization of the physicochemical properties of OPX was previously reported. The aim of the present work was to investigate a range of solvent systems for their effects on OPX interaction with human skin. METHODS: The solvents used in this study were propylene glycol (PG), diethylene glycol monoethyl ether or Transcutol® (TC), PG monolaurate (PGML), isopropyl myristate (IPM), caprylic/capric triglyceride or Labrafac™ Lipophile WL 1349 (LAB), PG caprylate or Capryol® 90 (CAP), isostearyl isostearate (ISIS) and Plurol® Oleique CC 497 (PIOI). The single solvent systems evaluated were PG, TC, PGML, IPM, ISIS and CAP. For the binary solvent systems, PG and TC were examined. Ternary solvent systems consisted of: PG, TC and LAB; PG, PGML and LAB; and PG, TC and IPM. The concentration of OPX used was 1% (w/v). Heat-separated human epidermis was used for 24 h permeation experiments performed under finite dose conditions; mass balance studies were also conducted. RESULTS: For the six single solvents examined no permeation was evident. Skin permeation of OPX was observed for binary and ternary solvent systems. The highest permeation for all PG:TC binary solvent system ratios tested was from the PG:TC (75:25) system. For the ternary solvent systems investigated, highest cumulative permeation of OPX was observed for PG:PGML:LAB (60:30:10). Considering all systems, PG:TC (75:25) delivered the greatest amount of OPX through the skin. Although OPX is deposited in the skin following the application of neat solvents, higher skin retention values were generally observed for binary and ternary systems. CONCLUSION: To our knowledge, this is the first study to examine the permeation behaviour of OPX for a range of single, binary and ternary solvent systems.


OBJECTIF: La perturbation de la barrière protectrice de la couche cornée augmente la vulnérabilité de la peau aux micro-organismes et facilite des affections telles que les pellicules. Les pellicules sont un trouble du cuir chevelu qui provoque une augmentation de la desquamation de la couche cornée et qui est associé au champignon Malassezia. Par conséquent, de nombreux produits commerciaux antipelliculaires utilisent des principes actifs antifongiques, tels que la piroctone olamine, également appelée Octopirox (OPX). L'OPX est un principe actif utilisé dans un certain nombre de préparations topiques pour la prise en charge des pellicules. La caractérisation des propriétés physicochimiques de l'OPX a été précédemment rapportée. L'objectif de ce travail était d'étudier un éventail de systèmes de solvants pour leurs effets sur l'interaction de l'OPX avec la peau humaine. MÉTHODES: Les solvants utilisés dans cette étude étaient le propylène glycol (PG), l'éther monoéthylique de diéthylèneglycol ou Transcutol® (TC), le monolaurate de propylène glycol (PGML), le myristate d'isopropyle (IPM), le triglycéride caprylique/caprique ou Labrafac™ lipophile WL 1349 (LAB), le caprylate de propylène glycol ou Capryol® 90 (CAP), l'isostéarate d'isostéaryle (ISIS) et Plurol® Oleique CC 497 (PIOI). Les systèmes à solvant unique évalués étaient le PG, le TC, le PGML, l'IPM, l'ISIS et le CAP. Pour les systèmes de solvants binaires, le PG et le TC ont été examinés. Les systèmes de solvants ternaires comprenaient : PG, TC et LAB ; PG, PGML et LAB ; et PG, TC et IPM. La concentration d'OPX utilisée était de 1 % (p/v). L'épiderme humain séparé par la chaleur a été utilisé pour des expériences de perméation de 24 heures réalisées dans des conditions de dose finie ; des études d'équilibre de masse ont également été menées. RÉSULTATS: Pour les six solvants uniques examinés, aucune perméation n'était manifeste. Une perméation cutanée de l'OPX a été observée pour les systèmes de solvants binaires et ternaires. La perméation la plus élevée pour tous les rapports du système de solvant binaire PG:TC testés a été obtenue avec le système PG:TC (75:25). Pour les systèmes de solvants ternaires étudiés, la perméation cumulée la plus élevée d'OPX a été observée pour PG:PGML:LAB (60:30:10). Parmi tous les systèmes, PG:TC (75:25) a délivré la plus grande quantité d'OPX à travers la peau. Bien que l'OPX se dépose dans la peau après l'application de solvants purs, des valeurs de rétention cutanée plus élevées ont généralement été observées pour les systèmes binaire et ternaire. CONCLUSION: À notre connaissance, il s'agit de la première étude visant à examiner le comportement de perméation de l'OPX pour un éventail de systèmes de solvants uniques, binaires et ternaires.

3.
Int J Cosmet Sci ; 45(3): 345-353, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36752028

ABSTRACT

OBJECTIVE: Dandruff and its more severe related condition, seborrheic dermatitis affects a high proportion of the population at some point in their life. Piroctone olamine, also known as Octopirox® (OPX) is the monoethanolamine salt of piroctone and is an antifungal agent widely used for the management of dandruff. The aim of the present work was to characterize the physicochemical properties of piroctone olamine and to conduct pre-formulation studies for the development of novel topical formulations of this active. METHODS: An HPLC method was developed and validated for the analysis of OPX. The melting point was determined using the DSC Q2000 (TA Instruments, USA). The distribution coefficient (logD(O/PBS) ) and partition coefficient (log Po/w ) was determined in phosphate-buffered saline (PBS) AND deionized (DI) water using the shake flask method. All experiments were performed at room temperature. The solubility was determined experimentally by adding amount of active to a solvent. The samples were kept at 32° ± 1°C for 48 h in a water bath. The stability of the compound was determined in a range of solvents by preparing solutions of 1 mg mL-1 in the relevant solvents. These solutions were kept and stirred throughout the experiment at 32 ± 1°C, and aliquots were taken at 24, 48 and 96 h. RESULTS: The HPLC method was developed successfully; however, samples at the lower end of the calibration curve showed lower degrees of precision and accuracy. Based on experiments with DSC, the melting point was observed at an onset temperature of 132.4°C. The LogD was determined to be 1.84. The compound had the highest solubility in methanol (278.4 mg mL-1 ) and propylene glycol (PG), with a value of 248.8 mg mL-1 . The lowest solubility for OPX was in dimethyl isosorbide (9.9 mg mL-1 ), Labrafac™ (3.6 mg mL-1 ) and isostearyl isostearate (0.5 mg mL-1 ). Over the 4 days, OPX showed stability in ethanol and PG, while a notable decrease in OPX was observed in PBS and DI water at 32 ± 1°C. CONCLUSION: The physicochemical properties of OPX were characterized to find suitable excipients able to target the epidermis for topical delivery. Building on these findings, future work will focus on the development of novel topical formulation of OPX.


OBJECTIF: la production de pellicules et la maladie plus grave qui y est apparentée, la dermatite séborrhéique, touchent une grande partie des personnes à un moment donné de leur vie. La piroctone olamine, également connue sous le nom d'Octopirox® (OPX), est le sel de monoéthanolamine de la piroctone. Il s'agit d'un agent antifongique largement utilisé pour le traitement des pellicules. L'objectif de ce travail était de caractériser les propriétés physicochimiques de la piroctone olamine et de mener des études de préformulation pour le développement de nouvelles formulations topiques de ce principe actif. MÉTHODES: une méthode de chromatographie liquide à haute performance (CLHP) a été développée et validée pour l'analyse de l'OPX. Le point de fusion a été déterminé à l'aide du calorimètre à balayage différentiel (Differential Scanning Calorimetry, DSC) Q2000 (TA Instruments, États-Unis). Le coefficient de distribution (logD(Octanol/PBS) ) et le coefficient de partage (log Poctanol/eau , ou log Poe ) ont été déterminés dans le tampon phosphate salin (phosphate buffered saline, PBS) et dans l'eau désionisée (deionised, DI) à l'aide de la méthode par agitation en flacon. Toutes les expériences ont été réalisées à température ambiante. La solubilité a été déterminée de manière expérimentale. Une certaine quantité du principe actif a été ajoutée au solvant. Les échantillons ont été conservés à une température de 32 °C ± 1 °C pendant 48 h dans un bain-marie. La stabilité du composé a été déterminée à l'aide d'une gamme de solvants. Des solutions de 1 mg mL−1 ont été préparées dans les solvants correspondants. Les solutions ont été conservées et agitées tout au long de l'expérience à une température de 32°C ± 1°C. Des aliquotes ont été prélevées après 24, 48 et 96 h. RÉSULTATS: la méthode CLHP a été développée avec succès. Toutefois, les échantillons situés dans la partie inférieure de la courbe d'étalonnage ont montré des degrés inférieurs de précision et d'exactitude. Sur la base des expériences avec le DSC, le point de fusion a été observé à une température initiale de 132,4°C. Le LogD a été déterminé à 1,84. Le composé présentait la solubilité la plus élevée dans le méthanol (278,4 mg mL−1 ) et le propylène glycol (PG), avec une valeur de 248,8 mg mL−1 . L'OPX présentait la solubilité la plus faible dans l'isosorbide de diméthyle (9,9 mg.mL−1 ), le LabrafacTM (3,6 mg mL−1 ) et l'isostéarate d'isostéaryle (0,5 mg mL−1 ). Sur les 4 jours, l'OPX a montré une stabilité dans l'éthanol et le PG, tandis qu'il a diminué de manière notable dans le PBS et l'eau désionisée à une température de 32°C ± 1°C. CONCLUSION: les propriétés physicochimiques de l'OPX ont été caractérisées afin de trouver des excipients appropriés capables de cibler l'épiderme dans le cadre d'une administration topique. En s'appuyant sur ces résultats, les travaux futurs se concentreront sur le développement d'une nouvelle formulation topique de l'OPX.


Subject(s)
Dandruff , Ethanolamines , Pyridones , Humans , Dandruff/drug therapy , Antifungal Agents/therapeutic use , Ethanolamines/therapeutic use , Drug Combinations , Pyridones/therapeutic use , Solubility , Drug Stability
4.
J Biophotonics ; 14(6): e202000483, 2021 06.
Article in English | MEDLINE | ID: mdl-33768666

ABSTRACT

Brillouin microscopy is a new form of optical elastography and an emerging technique in mechanobiology and biomedical physics. It was applied here to map the viscoelastic properties of human hair and to determine the effect of bleaching on hair properties. For hair samples, longitudinal measurements (i.e. along the fibre axis) revealed peaks at 18.7 and 20.7 GHz at the location of the cuticle and cortex, respectively. For hair treated with a bleaching agent, the frequency shifts for the cuticle and cortex were 19.7 and 21.0 GHz, respectively, suggesting that bleaching increases the cuticle modulus and-to a minor extent-the cortex modulus. These results demonstrate the capability of Brillouin spectroscopy to address questions on micromechanical properties of hair and to validate the effect of applied treatments.


Subject(s)
Hair , Microscopy , Humans , Spectrum Analysis
5.
Int J Pharm ; 549(1-2): 317-324, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30055301

ABSTRACT

Dandruff is a common condition, affecting up to half the global population of immunocompetent adults at some time during their lives and it has been highly correlated with the over-expression of the fungus Malassezia spp. Climbazole (CBZ) is used as an antifungal and preservative agent in many marketed formulations for the treatment of dandruff. While the efficacy of CBZ in vitro and in vivo has previously been reported, limited information has been published about the uptake and deposition of CBZ in the skin. Hence, our aim was to investigate the skin permeation of CBZ as well as the influence of various solvents on CBZ skin delivery. Four solvents were selected for the permeability studies of CBZ, namely propylene glycol (PG), octyl salicylate (OSal), Transcutol® P (TC) and polyethylene glycol 200 (PEG). The criteria for selection were based on their wide use as excipients in commercial formulations, their potential to act as skin penetration enhancers and their favourable safety profiles. 1% (w/v) solutions of CBZ were applied under infinite and finite dose conditions using Franz type diffusion cells to human and porcine skin. In line with the topical use of CBZ as an antidandruff agent, comparatively low amounts of CBZ penetrated across the skin barrier (<1% of the applied dose of CBZ). Finite dose studies resulted in a higher extraction of CBZ from human skin compared with infinite dose studies (p < 0.05). CBZ was also taken up to a higher extent in porcine skin (>7-fold) compared with human skin (p < 0.05). Nevertheless, no statistical differences were observed in the amounts that permeated across the different membranes. These preliminary results confirm the potential of simple formulations of CBZ to target the outer layers of the epidermis. The PG and OSal formulations appear to be promising vehicles for CBZ in terms of overall skin extraction and penetration. Future work will expand the range of vehicles studied and explore the reasons underlying the retention of CBZ in the outer layers of the skin.


Subject(s)
Antifungal Agents/administration & dosage , Imidazoles/administration & dosage , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Antifungal Agents/adverse effects , Drug Compounding , Ethylene Glycols/chemistry , Humans , Imidazoles/chemistry , Permeability , Propylene Glycol/chemistry , Salicylates/chemistry , Solvents/chemistry , Sus scrofa
6.
Arch Dermatol Res ; 309(9): 739-748, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28889318

ABSTRACT

The study objectives were to demonstrate that glycerol, when topically applied from a roll-on antiperspirant formulation, can be delivered directly to human skin ex vivo and the axillary stratum corneum (SC) in vivo, and to assess whether it improves the quality of the axillary skin barrier. Ex vivo human skin absorption of glycerol was measured following application of a roll-on antiperspirant formulation containing 4% 13C3-glycerol. Skin distribution of 13C3-glycerol over 24 h was assessed using gas chromatography-mass spectrometry. In vivo axillary SC penetration was measured by confocal Raman spectroscopy and multivariate curve-resolution software 1 h after topical application of a roll-on antiperspirant formulation containing 8% deuterated glycerol (d5-glycerol). A clinical study was conducted to determine the efficacy of a roll-on antiperspirant formulation containing 4% glycerol in reducing shaving-induced visual irritation and in increasing axillary-skin hydration. Ex vivo skin absorption studies indicated that the formulation delivered 13C3-glycerol into the SC at all timepoints over the 24-h period. In vivo Raman measurements (1 h after application) demonstrated that d5-glycerol was detectable to a depth of at least 10 µm in the axillary SC. Application of 4% glycerol from a roll-on antiperspirant formulation to the axilla was associated with significantly less visible irritation and greater skin hydration than observed with the control (glycerol-free) product. These studies demonstrate that glycerol, incorporated in a roll-on antiperspirant formulation, is delivered directly and rapidly to all depths of the axillary SC, and results in improvements in visible irritation and hydration in the axilla.


Subject(s)
Antiperspirants/pharmacology , Glycerol/pharmacology , Skin/drug effects , Adult , Double-Blind Method , Epidermis/drug effects , Female , Glycerol/administration & dosage , Glycerol/pharmacokinetics , Humans , Middle Aged , Skin/metabolism , Skin Absorption
7.
Phys Chem Chem Phys ; 19(12): 8575-8583, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28289743

ABSTRACT

High glycine-tyrosine (HGT) proteins are an important constituent of the keratin associated proteins (KAPs) present in human hair. The glassy state physics of hair fibres are thought to be largely regulated by KAPs, which exist in an amorphous state and are readily affected by environmental conditions. However, there are no studies characterizing the individual KAPs. In this paper, we present the first step to fill this gap by computational modeling and experimental studies on a HGT protein, KAP8.1. In particular, we have modeled the three-dimensional structure of this 63-residue protein using homology information from an anti-freeze protein in snow flea. The model for KAP8.1 is characterized by four strands of poly-proline II (or PPII) type helical secondary structures, held together by two cysteine disulphide bridges. Computer simulations confirm the stability of the modelled structure and show that the protein largely samples the PPII and ß-sheet conformations during the molecular dynamics simulations. Spectroscopic studies including Raman, IR and vibrational circular dichroism have also been performed on synthesized KAP8.1. The experimental studies suggest that KAP8.1 is characterised by ß-sheet and PPII structures, largely consistent with the simulation studies. The model built in this work is a good starting point for further simulations to study in greater depth the glassy state physics of hair, including its water sorption isotherms, glass transition, and the effect of HGT proteins on KAP matrix plasticization. These results are a significant step towards our goal of understanding how the properties of hair can be affected and manipulated under different environmental conditions of temperature, humidity, ageing and small molecule additives.


Subject(s)
Glycine/chemistry , Keratins/chemistry , Models, Molecular , Tyrosine/chemistry , Animals , Computer Simulation , Humans , Protein Conformation, beta-Strand , Protein Structure, Secondary , Spectrum Analysis
8.
Anal Chem ; 88(23): 11609-11615, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27791356

ABSTRACT

The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D'-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the ß-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin.


Subject(s)
Mucin-5B/chemistry , Glycosylation , Healthy Volunteers , Humans , Microscopy, Atomic Force , Mucin-5B/isolation & purification , Protein Structure, Secondary , Spectrum Analysis, Raman
9.
PLoS One ; 9(9): e108372, 2014.
Article in English | MEDLINE | ID: mdl-25264771

ABSTRACT

The salivary mucins that include MUC5B (gel-forming) and MUC7 (non-gel-forming) are major contributors to the protective mucus barrier in the oral cavity, and it is possible that dietary components may influence barrier properties. We show how one dietary compound, the green tea polyphenol epigallocatechin gallate (EGCG), can substantially alter the properties of both the polymeric MUC5B network and monomeric MUC7. Using rate-zonal centrifugation, MUC5B in human whole saliva and MUC5B purified from saliva sedimented faster in the presence of EGCG. The faster sedimentation by EGCG was shown to be greater with increasing MUC5B concentration. Particle tracking microrheology was employed to determine the viscosity of purified MUC5B solutions and showed that for MUC5B solutions of 200-1600 µg/mL, EGCG caused a significant increase in mucin viscosity, which was greater at higher MUC5B concentrations. Visualisation of the changes to the MUC5B network by EGCG was performed using atomic force microscopy, which demonstrated increased aggregation of MUC5B in a heterogeneous manner by EGCG. Using trypsin-resistant, high-molecular weight oligosaccharide-rich regions of MUC5B and recombinant N-terminal and C-terminal MUC5B proteins, we showed that EGCG causes aggregation at the protein domains of MUC5B, but not at the oligosaccharide-rich regions of the mucin. We also demonstrated that EGCG caused the majority of MUC7 in human whole saliva to aggregate. Furthermore, purified MUC7 also underwent a large increase in sedimentation rate in the presence of EGCG. In contrast, the green tea polyphenol epicatechin caused no change in the sedimentation rate of either MUC5B or MUC7 in human whole saliva. These findings have demonstrated how the properties of the mucin barrier can be influenced by dietary components. In the case of EGCG, these interactions may alter the function of MUC5B as a lubricant, contributing to the astringency (dry puckering sensation) of green tea.


Subject(s)
Catechin/analogs & derivatives , Catechin/metabolism , Mucin-5B/metabolism , Mucins/metabolism , Saliva/metabolism , Salivary Proteins and Peptides/metabolism , Camellia sinensis , Centrifugation, Zonal , Diet , Humans , Microscopy, Atomic Force , Polyphenols/metabolism , Protein Aggregates , Protein Structure, Tertiary , Tea
10.
PLoS One ; 9(8): e105302, 2014.
Article in English | MEDLINE | ID: mdl-25162539

ABSTRACT

Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.


Subject(s)
Cross-Linking Reagents/chemistry , Mucins/chemistry , Polyphenols/chemistry , Tea/chemistry , Animals , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/isolation & purification , Cross-Linking Reagents/isolation & purification , Elasticity , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/metabolism , Humans , Mucins/isolation & purification , Neutron Diffraction , Phase Transition , Phenols/chemistry , Phenols/isolation & purification , Polyphenols/isolation & purification , Scattering, Small Angle , Solutions , Swine , Viscosity
11.
Biopolymers ; 101(12): 1154-64, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25041765

ABSTRACT

The structures of purified soluble porcine gastric (Muc5ac) and duodenal (Muc2) mucin solutions at neutral and acidic pH were examined using small-angle X-ray scattering and small-angle neutron scattering experiments. We provide evidence for the morphology of the network above the semidilute overlap concentration and above the entanglement concentration. Furthermore, we investigated the gelation of both types of mucin solutions in response to a reduction in pH, where we observed the formation of large-scale heterogeneities within the polymer solutions, typical of microphase-separated gels. The concentration dependence of the inhomogeneity length scale (Ξ) and the amplitude of the excess scattering intensity [I(ex) (0)] are consistent with previously studied gelled synthetic polymeric systems. The persistence lengths of the chains were found to be similar for both Muc5ac and Muc2 from Kratky plots of the neutron data (8 ± 2 nm).


Subject(s)
Gastrointestinal Tract/metabolism , Mucin 5AC/chemistry , Mucin-2/chemistry , Neutron Diffraction , Scattering, Small Angle , X-Ray Diffraction , Animals , Hydrogen-Ion Concentration , Solubility , Sus scrofa
12.
Biopolymers ; 101(4): 366-77, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23955640

ABSTRACT

The rheological characteristics of gastric and duodenal mucin solutions, the building blocks of the mucus layer that covers the epithelia of the two organs, were investigated using particle tracking microrheology. We used biochemically well characterized purified porcine mucins (MUC5AC and MUC2) as models for human mucins, to probe their viscoelasticity as a function of mucin concentration and pH. Furthermore, we used both reducing (dithiothreitol, DTT) and chaotropic agents (guanidinium chloride and urea) to probe the mesoscopic forces that mediate the integrity of the polymer network. At neutral pH both gastric and duodenal mucins formed self-assembled semi-dilute networks above a certain critical mucin concentration (c*) with the viscosity (η) scaling as η∼c(0.53±0.08) for MUC5AC and η∼c(0.53±0.06) for MUC2, where c is the mucin concentration. Above an even higher mucin concentration threshold (ce , the entanglement concentration) reptation occurs and there is a dramatic increase in the viscosity scaling, η∼c(3.92±0.38) for MUC5AC and η∼c(5.1±0.8) for MUC2. The dynamics of the self-assembled comb polymers is examined in terms of a scaling model for flexible polyelectrolyte combs. Both duodenum and gastric mucin are found to be pH switchable gels, gelation occurring at low pHs. There is a hundred-fold increase in the elastic shear modulus once the pH is decreased. The addition of DTT, guanidinium chloride and urea disassembles both the semi-dilute and gel structures causing a large increase in the compliance (decrease in their shear moduli). Addition of the polyphenol EGCG has a reverse effect on mucin viscoelasticity, that is, it triggers a sol-gel transition in semi-dilute mucin solutions at neutral pH.


Subject(s)
Gastric Mucins/isolation & purification , Rheology/methods , Animals , Duodenum/metabolism , Elastic Modulus , Humans , Hydrogen-Ion Concentration , Protein Multimerization , Solutions , Sus scrofa , Viscosity
13.
Appl Spectrosc ; 67(12): 1408-16, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24359655

ABSTRACT

This paper describes the application of Raman spectroscopy to whole hair fibers. Previously this has proved difficult because the hairs are relatively opaque, and spatial resolution diminishes with depth because of the change in refractive index. A solution is to couple confocal Raman with multivariate curve resolution (MCR) data analysis, which separates spectral differences with depth despite this reduction in resolution. Initially, it is shown that the cuticle can be separated from the cortex, showing the differences in the proteins, which can then be plotted as a function of depth, with the cuticle factor being seen only at the surface as expected. Hairs that had been treated in different ways, e.g., by bleaching, treatment with the active molecule resorcinol followed by rinsing and treatment with a full hair care product, were also examined. In all cases, changes to the hair are identified and are associated with specific parts of the fiber. Since the hair fiber is kept intact, it can be repeatedly treated and measured, hence multistep treatment processes can be followed. This method expands the potential use of Raman spectroscopy in hair research.


Subject(s)
Hair/chemistry , Image Processing, Computer-Assisted/methods , Spectrum Analysis, Raman/methods , Animals , Cattle , Glycerol/pharmacology , Hair/drug effects , Hair Bleaching Agents/pharmacology , Humans , Peroxides/pharmacology , Resorcinols/pharmacology
14.
Appl Spectrosc ; 66(8): 882-91, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22800645

ABSTRACT

This paper describes a new in vivo Raman probe that allows investigation of areas of the body that are otherwise difficult to access. It is coupled to a previously described commercially available in vivo Raman spectrometer that samples the skin through an optical flat. In the work presented here, the laser light emerges from a smaller pen-shaped probe. It thus works on the same principles as the original spectrometer, while its relative performance in terms of signal-to-noise ratio of the spectra and obtained spatial resolution is only slightly diminished. It allows the window to be placed against the subject in more curved and recessed areas of subject's body and also for them to be more comfortable while the measurements take place. Results from three areas of the body that have previously been very difficult to study are described, the mouth, axilla, and scalp. Results from the scalp and axilla strata cornea (SC) show significant differences from the "normal" SC of the volar forearm. For instance, the scalp is observed to have lower amounts of natural moisturizing factors (NMF) compared to the volar forearm within the same subjects. Also for both the axilla and scalp the lipids show a change in order as compared to the lipids in the volar forearm and also differences from each other. The potential significance of these observations is discussed. Further, we show how we can probe the mouth, in this case observing the presence of the astringent tea polyphenol epigallocatechin gallate within the oral mucosa.


Subject(s)
Epidermis/chemistry , Lipids/analysis , Mouth Mucosa/chemistry , Spectrum Analysis, Raman/instrumentation , Adult , Axilla , Catechin/analogs & derivatives , Catechin/analysis , Equipment Design , Female , Forearm , Humans , Male , Middle Aged , Organ Specificity , Scalp/chemistry , Spectrum Analysis, Raman/methods , Young Adult
15.
Analyst ; 136(18): 3694-7, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21789314

ABSTRACT

Cryo In-SEM Raman has been used for the first time to localise carotene compounds in a food matrix. Raman spectra of lycopene and ß-carotene have been obtained from sampling oil droplets and plant cell structures visualised with cryo-SEM in tomato and carrot based emulsions containing 5% oil. It was possible to identify the carotenoids in both the oil droplets and the cell walls. Furthermore our results gave some indication that the carotenoids were in the non-crystalline state. It has been suggested that a higher amount of carotenes solubilised into the oil phase of the food matrix would lead to a higher bioaccessibility, thus understanding the effect of processing conditions on micronutrients distribution in a food matrix might help the design of plant based food products with a better nutritional quality. This shows improved structural characterisation of the cryo-SEM with the molecular sensitivity of Raman spectroscopy as a promising approach for complex biological problems.


Subject(s)
beta Carotene/chemistry , Carotenoids/chemistry , Daucus carota/chemistry , Food Analysis , Lycopene , Solanum lycopersicum/chemistry , Spectrum Analysis, Raman
16.
J Food Sci ; 76(9): H215-25, 2011.
Article in English | MEDLINE | ID: mdl-22416706

ABSTRACT

UNLABELLED: The correlation between food microstructure and in vitro bioaccessibility of carotenes was evaluated for tomato and carrot emulsions (5% olive oil) subjected to high pressure homogenization (HPH) at varying degrees of intensity. The aim was to investigate whether additional mechanical disruption of the food matrix could be utilized to further increase the carotene bioaccessibility of an already pre-processed material. The carotene bioaccessibility of the samples was measured after simulated in vitro digestion, carotene release to the oil phase was estimated by Confocal Raman spectroscopy and, to measure active uptake of carotenes, Caco-2 cells were incubated with the digesta of selected samples. HPH did not notably affect the retention of carotenes or ascorbic acid but significantly increased both the release and micellar incorporation of α- and ß-carotene in carrot emulsions 1.5- to 1.6-fold. On the other hand, in vitro bioaccessibility of lycopene from tomato was not increased by HPH under any of the conditions investigated. Instead, the results suggested that lycopene bioaccessibility was limited by a combination of the low solubility of lycopene in dietary lipids and entrapment in the cellular network. Carotene uptake by Caco-2 cells appeared to be mainly dependent upon the carotene concentration of the digesta, but cis-trans isomerization had a significant impact on the micellarization efficiency of carotenes. We therefore conclude that HPH is an interesting option for increasing the bioaccessibility of carotenes from fruits and vegetables while maintaining a high nutrient content, but that the results will depend on both food source and type of carotene. PRACTICAL APPLICATION: A better understanding of the correlation between the processing of fruits and vegetables, microstructure and nutrient bioaccessibility can be directly applied in the production of food products with an increased nutritional value.


Subject(s)
Carotenoids/chemistry , Daucus carota/chemistry , Pressure , Solanum lycopersicum/chemistry , beta Carotene/chemistry , Ascorbic Acid/chemistry , Caco-2 Cells , Emulsions , Food Handling/methods , Hot Temperature , Humans , Lycopene , Micelles , Nutritive Value , Spectrum Analysis, Raman
17.
Phys Chem Chem Phys ; 12(18): 4590-9, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20428538

ABSTRACT

Ellipsometry was employed to study the adsorption to the hexadecane-water interface of the simple non-ionic hydrocarbon surfactant C(10)E(8) and the two milk proteins beta-casein and beta-lactoglobulin, as well as the competitive adsorption of each protein with the surfactant. The interfacial excess of the pure surfactant was determined by tensiometry. Modelling of the ellipsometric response of the pure surfactant monolayer shows that the polyethylene oxide headgroups are hydrated with approximately 40% of the headgroup layer occupied by water. Adsorbed layers of C(10)E(8) at the hexadecane-water, triolein-water and air-water interfaces are structurally similar. Both proteins form dense layers at the oil-water interface with a volume fraction of water in the protein film of <60%. Competitive adsorption between the surfactant and protein was investigated in two ways: co-adsorption from solution or injection of surfactant solution into the subphase of a preformed protein film. The long-time ellipsometric response was independent of the preparation procedure. The protein and surfactant films at oil-water interfaces generate ellipticities of opposite sign, which enabled direct determination of the concentration at which the surfactant completely displaces protein from the interface.


Subject(s)
Caseins/chemistry , Lactoglobulins/chemistry , Oils/chemistry , Optical Phenomena , Surface-Active Agents/chemistry , Water/chemistry , Adsorption , Alkanes/chemistry , Injections
18.
Phys Chem Chem Phys ; 11(25): 5010-8, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19562130

ABSTRACT

The behaviour of stearic acid neutralised by triethanolamine to form soap and its acid-soap has been examined by infrared spectroscopy. It was found that not only could the neutralisation behaviour be characterised, but the thermotropic behaviour could also be followed. The neutralisation confirmed the formation of a fixed stoichiometeric ratio, 2 : 1, acid-soap. When following the thermotropic behaviour the break up of the acid-soap could be followed along with various disordering and melting transitions of the alkyl chain tail. This allowed all the thermal transitions that have been observed to be characterised in terms of the type of molecular rearrangement that was occurring and also the transition temperature at which they occurred. This allowed the binary phase diagram to be plotted and understood for this system. This is the first time IR has been used to measure a whole phase diagram of this type. The nature of the acid-soap complex itself was also characterised, with very short hydrogen bonds being present as well as a free, non-hydrogen bonded, hydroxyl group.


Subject(s)
Acids/chemistry , Ethanolamines/chemistry , Soaps/chemistry , Stearic Acids/chemistry , Phase Transition , Spectrophotometry, Infrared
19.
J Control Release ; 138(1): 32-9, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19401210

ABSTRACT

The purpose of this study is to monitor in vivo the effect of chemical penetration enhancers on the delivery of trans-retinol into human skin. Chemical penetration enhancers reversibly alter barrier properties of the SC by disruption of the membrane structures or maximising drug solubility with the skin. So far, most of permeation or penetration experiments are performed in vitro. Raman spectroscopy is uniquely placed to be able to measure biological processes in vivo and this paper shows for the first time that the effect of penetration enhancer on the delivery of trans-retinol can successfully be measured in vivo using this technique. Here, the volar forearm of volunteers was treated with four formulations. One formulation is a highly effective model delivery system identified from ex vivo experiments: trans-retinol in Propylene Glycol (PG)/ethanol, with PG being a well-known and efficient penetration enhancer. The other three formulations are based on 0.3% trans-retinol in Caprylic/Capric Acid Triglyceride (MYRITOL 318), an oil commonly used in skin creams but in two of them a specific penetration enhancer is added. One contains a lipid extractor, Triton X 100, whereas another formulation contains a lipid fluidiser, Oleic Acid. Solutions were applied once and measurements were performed up to 6 h after treatment. Remarkable differences in the delivery of trans-retinol between formulation with or without penetration enhancer can clearly be seen. Moreover, the type of penetration enhancer is also shown to influence the delivery. While using the Oleic Acid, which is a lipid fluidiser, a better delivery of trans-retinol in the skin can be detected. For the first time, the effect of penetration enhancer on the delivery of trans-retinol has been monitored, non invasively in vivo, with time.


Subject(s)
Drug Carriers/pharmacology , Octoxynol/pharmacology , Oleic Acid/pharmacology , Skin Absorption/drug effects , Spectrum Analysis, Raman/methods , Vitamin A/administration & dosage , Vitamins/administration & dosage , Administration, Cutaneous , Adult , Chemistry, Pharmaceutical , Humans , Male , Middle Aged , Propylene Glycol/pharmacology , Skin/drug effects , Skin/metabolism , Vitamin A/pharmacokinetics , Vitamins/pharmacokinetics
20.
Proteins ; 70(3): 823-33, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17729278

ABSTRACT

Vibrational Raman optical activity (ROA), measured as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light, or as the intensity of a small circularly polarized component in the scattered light, is a powerful probe of the aqueous solution structure of proteins. The large number of structure-sensitive bands in protein ROA spectra makes multivariate analysis techniques such as nonlinear mapping (NLM) especially favorable for determining structural relationships between different proteins. We have previously used NLM to map a large dataset of peptide, protein, and virus ROA spectra into a readily visualizable two-dimensional space in which points close to or distant from each other, respectively, represent similar or dissimilar structures. As well as folded proteins, our dataset contains ROA spectra from many natively unfolded proteins, proteins containing both folded and unfolded domains, denatured partially structured molten globule and reduced protein states, together with folded proteins containing little or no alpha-helix or beta-sheet. In this article, the relative positions of these systems in the NLM plot are used to obtain information about any residual structure that they may contain. The striking differences between the structural propensities of proteins that are unfolded in their native states and those that are unfolded due to denaturation may be responsible for their often very different behavior, especially with regard to aggregation. An ab initio simulation of the Raman and ROA spectra of an alanine oligopeptide in the poly(L-proline) II-helical conformation confirms previous suggestions that this conformation is a significant structural element in disordered peptides and natively unfolded proteins. The use of ROA to identify and characterize proteins containing significant amounts of unfolded structure will, inter alia, be valuable in structural genomics/proteomics since unfolded sequences often inhibit crystallization.


Subject(s)
Oligopeptides/chemistry , Protein Conformation , Spectrum Analysis, Raman/methods , Alanine/chemistry , Alanine/metabolism , Computer Simulation , Multivariate Analysis , Peptides/chemistry , Peptides/metabolism , Protein Folding , Proteins/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...