Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37895571

ABSTRACT

Explainable Artificial Intelligence (XAI) and acceptable artificial intelligence are active topics of research in machine learning. For critical applications, being able to prove or at least to ensure with a high probability the correctness of algorithms is of utmost importance. In practice, however, few theoretical tools are known that can be used for this purpose. Using the Fisher Information Metric (FIM) on the output space yields interesting indicators in both the input and parameter spaces, but the underlying geometry is not yet fully understood. In this work, an approach based on the pullback bundle, a well-known trick for describing bundle morphisms, is introduced and applied to the encoder-decoder block. With constant rank hypothesis on the derivative of the network with respect to its inputs, a description of its behavior is obtained. Further generalization is gained through the introduction of the pullback generalized bundle that takes into account the sensitivity with respect to weights.

2.
Entropy (Basel) ; 21(1)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-33266759

ABSTRACT

Finding an approximate probability distribution best representing a sample on a measure space is one of the most basic operations in statistics. Many procedures were designed for that purpose when the underlying space is a finite dimensional Euclidean space. In applications, however, such a simple setting may not be adapted and one has to consider data living on a Riemannian manifold. The lack of unique generalizations of the classical distributions, along with theoretical and numerical obstructions require several options to be considered. The present work surveys some possible extensions of well known families of densities to the Riemannian setting, both for parametric and non-parametric estimation.

3.
IEEE Trans Vis Comput Graph ; 24(1): 500-510, 2018 01.
Article in English | MEDLINE | ID: mdl-28866541

ABSTRACT

Bundling visually aggregates curves to reduce clutter and help finding important patterns in trail-sets or graph drawings. We propose a new approach to bundling based on functional decomposition of the underling dataset. We recover the functional nature of the curves by representing them as linear combinations of piecewise-polynomial basis functions with associated expansion coefficients. Next, we express all curves in a given cluster in terms of a centroid curve and a complementary term, via a set of so-called principal component functions. Based on the above, we propose a two-fold contribution: First, we use cluster centroids to design a new bundling method for 2D and 3D curve-sets. Secondly, we deform the cluster centroids and generate new curves along them, which enables us to modify the underlying data in a statistically-controlled way via its simplified (bundled) view. We demonstrate our method by applications on real-world 2D and 3D datasets for graph bundling, trajectory analysis, and vector field and tensor field visualization.

4.
Entropy (Basel) ; 20(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-33265736

ABSTRACT

In this paper, the problem of clustering rotationally invariant shapes is studied and a solution using Information Geometry tools is provided. Landmarks of a complex shape are defined as probability densities in a statistical manifold. Then, in the setting of shapes clustering through a K-means algorithm, the discriminative power of two different shapes distances are evaluated. The first, derived from Fisher-Rao metric, is related with the minimization of information in the Fisher sense and the other is derived from the Wasserstein distance which measures the minimal transportation cost. A modification of the K-means algorithm is also proposed which allows the variances to vary not only among the landmarks but also among the clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...