Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(23): 235701, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298904

ABSTRACT

We study the current-carrying steady state of a transverse field Ising chain coupled to magnetic thermal reservoirs and obtain the nonequilibrium phase diagram as a function of the magnetization potential of the reservoirs. Upon increasing the magnetization bias we observe a discontinuous jump of the magnetic order parameter that coincides with a divergence of the correlation length. For steady states with a nonvanishing conductance, the entanglement entropy at zero temperature displays a bias dependent logarithmic correction that violates the area law and differs from the well-known equilibrium case. Our findings show that out-of-equilibrium conditions allow for novel critical phenomena not possible at equilibrium.

2.
J Phys Condens Matter ; 29(30): 305601, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28573976

ABSTRACT

A mean-field treatment is presented of a square lattice two-orbital-model for [Formula: see text] taking into account intra- and inter-orbital superconductivity. A rich phase diagram involving both types of superconductivity is presented as a function of the ratio between the couplings of electrons in the same and different orbitals ([Formula: see text]) and electron doping x. With the help of a quantity we call orbital-mixing ratio, denoted as [Formula: see text], the phase diagram is analyzed using a simple and intuitive picture based on how [Formula: see text] varies as electron doping increases. The predictive power of [Formula: see text] suggests that it could be a useful tool in qualitatively (or even semi-quantitatively) analyzing multiband superconductivity in BCS-like superconductors.

3.
J Phys Condens Matter ; 27(42): 422002, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26440940

ABSTRACT

The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. The Kitaev model plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the sp-chain with an anti-symmetric mixing among the s and p bands is a paradigmatic example of a topological insulator with well understood properties. Interestingly, these models share the same universality class for their topological quantum phase transitions. In this work we study a two-band model of spinless fermions with attractive inter-band interactions. We obtain its zero temperature phase diagram, which presents a rich variety of phases including a Weyl superconductor and a topological insulator. The transition from the topological to the trivial superconducting phase has critical exponents different from those of Kitaev's model.

SELECTION OF CITATIONS
SEARCH DETAIL
...