Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4512, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500623

ABSTRACT

Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.

2.
ChemSusChem ; 15(14): e202200343, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35474609

ABSTRACT

Lignin is an abundant natural polymer obtained from lignocellulosic biomass and rich in aromatic substructures. When efficiently depolymerized, it has great potential in the production of value-added chemicals. Fast pyrolysis is a promising depolymerization method, but current studies focus mainly on small quantities of lignin. In this Review, to determine the potential for upscaling, systems used in the most relevant unit operations of fast pyrolysis of lignin are evaluated. Fluidized-bed reactors have the most potential. It would be beneficial to combine them with the following: slug injectors for feeding, hot particle filters, cyclones, and fractional condensation for product separation and recovery. Moreover, upgrading lignin pyrolysis oil would allow the necessary quality parameters for particular applications to be reached.


Subject(s)
Lignin , Pyrolysis , Biofuels , Hot Temperature , Lignin/chemistry , Technology
3.
Angew Chem Int Ed Engl ; 60(45): 24002-24007, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34459534

ABSTRACT

Radical-mediated gas-phase reactions play an important role in the conversion of methane under non-oxidative conditions into olefins and aromatics over iron-modified silica catalysts. Herein, we use operando photoelectron photoion coincidence spectroscopy to disentangle the elusive C2+ radical intermediates participating in the complex gas-phase reaction network. Our experiments pinpoint different C2 -C5 radical species that allow for a stepwise growth of the hydrocarbon chains. Propargyl radicals (H2 C-C≡C-H) are identified as essential precursors for the formation of aromatics, which then contribute to the formation of heavier hydrocarbon products via hydrogen abstraction-acetylene addition routes (HACA mechanism). These results provide comprehensive mechanistic insights that are relevant for the development of methane valorization processes.

4.
Chem Sci ; 12(9): 3161-3169, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-34164083

ABSTRACT

The catalytic pyrolysis mechanism of the initial lignin depolymerization products will help us develop biomass valorization strategies. How does isomerism influence reactivity, product formation, selectivities, and side reactions? By using imaging photoelectron photoion coincidence (iPEPICO) spectroscopy with synchrotron radiation, we reveal initial, short-lived reactive intermediates driving benzenediol catalytic pyrolysis over H-ZSM-5 catalyst. The detailed reaction mechanism unveils new pathways leading to the most important products and intermediates. Thanks to the two vicinal hydroxyl groups, catechol (o-benzenediol) is readily dehydrated to form fulvenone, a reactive ketene intermediate, and exhibits the highest reactivity. Fulvenone is hydrogenated on the catalyst surface to phenol or is decarbonylated to produce cyclopentadiene. Hydroquinone (p-benzenediol) mostly dehydrogenates to produce p-benzoquinone. Resorcinol, m-benzenediol, is the most stable isomer, because dehydration and dehydrogenation both involve biradicals owing to the meta position of the hydroxyl groups and are unfavorable. The three isomers may also interconvert in a minor reaction channel, which yields small amounts of cyclopentadiene and phenol via dehydroxylation and decarbonylation. We propose a generalized reaction mechanism for benzenediols in lignin catalytic pyrolysis and provide detailed mechanistic insights on how isomerism influences conversion and product formation. The mechanism accounts for processes ranging from decomposition reactions to molecular growth by initial polycyclic aromatic hydrocarbon (PAH) formation steps to yield, e.g., naphthalene. The latter involves a Diels-Alder dimerization of cyclopentadiene, isomerization, and dehydrogenation.

SELECTION OF CITATIONS
SEARCH DETAIL
...