Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38002451

ABSTRACT

The biocompatible polymer polyetheretherketone (PEEK) is a suitable candidate to be part of potential all-polymer total joint replacements, provided its use is associated with better osseointegration, mechanical performance, and wear resistance. Seeking to meet the aforementioned requirements, respectively, we have manufactured a PEEK composite with different fillers: carbon fibers (CF), hydroxyapatite particles (HA) and graphene platelets (GNP). The mechanical outcomes of the composites with combinations of 0, 1.5, 3.0 wt% GNP, 5 and 15 wt% HA and 30% of wt% CF concentrations pointed out that one of the best filler combinations to achieve the previous objectives was 30 wt% CF, 8 wt% HA and 2 wt% of GNP. The study compares the bioactivity of human osteoblasts on this composite prepared by injection molding with that on the material manufactured by the Fused Filament Fabrication 3D additive technique. The results indicate that the surface adhesion and proliferation of human osteoblasts over time are better with the composite obtained by injection molding than that obtained by 3D printing. This result is more closely correlated with morphological parameters of the composite surface than its wettability behavior.

2.
Clin Orthop Relat Res ; 473(3): 1022-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25627146

ABSTRACT

BACKGROUND: Minimizing the impact of oxidation on ultrahigh-molecular-weight polyethylene components is important for preserving their mechanical integrity while in vivo. Among the strategies to reduce oxidation in modern first-generation highly crosslinked polyethylenes (HXLPEs), postirradiation remelting was considered to afford the greatest stability. However, recent studies have documented measurable oxidation in remelted HXLPE retrievals. Biologic prooxidants and physiologic loading have been proposed as potential mechanisms. QUESTIONS/PURPOSES: In our pilot study, we asked: (1) Does cyclic stress induced by wear or (2) by cyclic compression loading increase oxidation and crystallinity of remelted HXLPE? (3) Does oxidative aging reduce the wear resistance of remelted HXLPE? METHODS: Remelted and annealed HXLPE prisms (n = 1 per test condition) were tested in a wear simulator for 500,000 cycles. After wear testing, some samples were subjected to accelerated aging and then wear-tested again. Wear track volumes were characterized by confocal microscopy. Thin films (200-µm thick) were microtomed from wear prisms and then used for Fourier transform infrared spectroscopy oxidation and crystallinity assessments. Remelted HXLPE compression cylinders (n = 1 per test condition) were subjected to fatigue experiments and similar oxidation characterization. RESULTS: Remelted HXLPE qualitatively showed low oxidation indices (≤ 1) when subjected either to cyclic loading or aging alone. However, oxidation levels almost doubled in near-surface regions when remelted HXLPE samples underwent consecutive cyclic loading, artificial aging, and cyclic loading steps. The type of loading (wear versus compression fatigue) appeared to not affect the oxidation behavior in the studied conditions. Annealed HXLPE showed higher oxidation (oxidation index > 3) than remelted HXLPE and delamination wear. No delamination wear was observed in remelted HXLPE in agreement with its comparatively low oxidation levels (oxidation index < 3). CONCLUSIONS: With the numbers available in our pilot study, the findings suggest that cyclic stress arising from a wear process or from cyclic compression may trigger the loss of oxidative stability of remelted HXLPE and contribute to synergistically accelerate its progression. Further studies of the effect of cyclic stress on oxidation of remelted HXLPE are needed. CLINICAL RELEVANCE: Retrieval studies are warranted to determine the natural history of the in vivo oxidation and wear behavior of first-generation, remelted HXLPE.


Subject(s)
Materials Testing , Polyethylenes/chemistry , Stress, Mechanical , Humans , Oxidation-Reduction , Pilot Projects , Spectroscopy, Fourier Transform Infrared , Surface Properties
3.
Int J Pharm ; 409(1-2): 1-8, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21335077

ABSTRACT

A new type of implantable drug eluting device is presented, consisting of a bed of mesoporous microparticles packed inside a reservoir with a porous wall. This provides two sets of variables for drug release control that can be tailored independently. The first is related to the microparticles (packing density, size and pore structure) and the second to the reservoir (pore diameter and thickness of the wall, permeation area). In this work the concept is developed into a working model, used to fight bacterial (Staphylococcus aureus) growth by releasing linezolid that had previously been adsorbed on silica microparticles. These particles were placed inside the hollow interior of a porous medical grade stainless steel pin mimicking those used in traumatology and in orthopedic surgery. The mechanical behavior of the porous drug-eluting pin was tested and found satisfactory.


Subject(s)
Acetamides/administration & dosage , Anti-Bacterial Agents/administration & dosage , Oxazolidinones/administration & dosage , Silicon Dioxide/chemistry , Staphylococcus aureus/drug effects , Acetamides/pharmacology , Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations , Drug Implants , Linezolid , Microspheres , Oxazolidinones/pharmacology , Particle Size , Porosity , Staphylococcal Infections/drug therapy
4.
J Biomed Mater Res B Appl Biomater ; 91(1): 337-47, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19484775

ABSTRACT

The main purpose of this work is the study of different physicochemical treatments on Nitinol slabs and wires, with the aim of inducing the formation of a TiO(2) surface film capable of increasing the corrosion resistance of the material and of reducing the release of Ni when the Nitinol samples were immersed in simulated body fluid (SBF). To this end, a battery of measurements (surface roughness, contact angle, electrochemical corrosion, chemical analysis as a function of depth, and Ni release to SBF) has been used to characterize Nitinol commercial samples, as received, and also after the different treatments performed. The results clearly indicate the effectiveness of the passivation TiO(2) layer as a barrier against Ni leaching, and the detrimental effects of any processes (such as polishing or cutting) that result in exposure of areas not coated by the TiO(2) film. Chemical methods such as oxidation in nitric acid or hydrothermal treatment of the samples (by prolonged immersion in boiling water) seem to provide simple and efficient ways of forming TiO(2) films of adequate thickness on the Nitinol surface.


Subject(s)
Alloys , Alloys/chemistry , Alloys/metabolism , Biocompatible Materials/chemistry , Body Fluids/chemistry , Corrosion , Humans , Materials Testing , Nickel/chemistry , Nickel/metabolism , Oxidation-Reduction , Surface Properties , Titanium/chemistry , Titanium/metabolism
5.
J Orthop Sci ; 14(1): 68-75, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19214691

ABSTRACT

BACKGROUND: The influence of the total joint components' elastic deformation on lubrication is generally accepted, but little is known about the influence of joint conformity under hydrodynamic lubrication based on fluid film interposition. The aim of this study was to evaluate induced pressure and stresses in the knee under fluid film lubrication during the stance phase of walking under various joint conformity conditions. METHODS: A theoretical two-dimensional (2D) geometric model of knee prosthesis contact, with Dirichlet boundary conditions at both edges, and with a conformity index (CI) of 0, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 0.995, and 1.0, was used to calculate the spatiotemporal lubricant flow on a synovial fluid rheological model. With the instantaneous load as a source term, the Reynolds lubrication equation was subsequently solved following a finite volume approach in two dimensions and three dimensions. RESULTS: Conformity strongly influenced the peak pressure, from 47 MPa with CI = 0 to 1.4 MPa with CI = 1, with a definite behavior change from CI = 0.96. The role of hydrodynamic lubrication was restricted to early steps of the stance phase. With CI < 0.96, there was a smooth maximum pressure decrease with increasing CI. In contrast, the maximum pressure fell abruptly with conformity > 0.96. CONCLUSION: The present model suggested the limited modifying effect of hydrodynamic lubrication in total knee replacement systems. However, its role during the early stance phase, coupled with high conformity, helps significantly to decrease compressive stresses on the polyethylene, fostering the beneficial effect of high conformity in a mixed lubrication regime. This beneficial effect may also be of great interest in total knee replacement systems based on materials with less deformation.


Subject(s)
Knee Joint/physiology , Knee Prosthesis , Models, Biological , Synovial Fluid/physiology , Biomechanical Phenomena , Humans , Walking
6.
Open Orthop J ; 3: 115-20, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20111694

ABSTRACT

Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs. As THR results have been challenged by wear, oxidation, and liner fracture, relevant research on the material properties in the past decade has led to the development and clinical introduction of highly crosslinked polyethylenes (HXLPE). More stress on the bearing (more active, overweighted, younger patients), and more variability in the implantation technique in different small and large Hospitals may further compromise the clinical performance for many patients. The long-term in vivo performance of these materials remains to be proven. Clinical and retrieval studies after more than 5 years of in vivo use with HXLPE in THR are reviewed and consistently show a substantial decrease in wear rate. Moreover, a second generation of improved polyethylenes is backed by in vitro data and awaits more clinical experience to confirm the experimental improvements. Also, new antioxidant, free radical scavengers, candidates and the reinforcement of polyethylene through composites are currently under basic research.Oxidation of polyethylene is today significantly reduced by present formulations, and this forgiving, affordable, and wellknown material is still reliable to meet today's higher requirements in total hip replacement.

7.
Acta Orthop ; 79(6): 832-40, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19085503

ABSTRACT

Ultra-high molecular weight polyethylene (UHMWPE) is the key material for achieving excellent long-term results in total joint arthroplasties. Despite the fact that there has been a substantial amount of research and development over the years, new aspects of this material are still controversial and the most recent innovations have had a variable reception regarding clinical use. Advancements in conventional UHMWPE in the 1990s (nitrogen atmosphere irradiation, barrier package) were further improved by introduction of first-generation crosslinked polyethylene, as seen both from laboratory findings and clinical results. However, while clinical data on first-generation highly crosslinked polyethylene (HXLPE) showed reduced wear in the medium-term, academic and industrial research have helped to refine the material further, to overcome criticisms regarding residual oxidation and potential material fracture. Present concerns, although less nowadays, relate to the post-irradiation techniques used to stabilize the crosslinked polyethylene, namely annealing and remelting. Current topics of research interest include in vivo oxidation, second-generation highly crosslinked polyethylene, vitamin E doped or blended polyethylene, fracture mechanics, and consequences of wear. Some of these improvements derived from recent research are already available to the orthopedic community, and others will appear in the next few years. This review gives an overview of these topics, and the latest advancements are described in detail with a view to help the orthopedic surgeon make scientifically sound decisions when selecting material for total-joint implants. We conclude the review by affirming that today's state-of-the-art material is no longer conventional UHMWPE, but HXLPE.1.


Subject(s)
Arthroplasty, Replacement , Polyethylenes , Arthroplasty, Replacement/methods , Biocompatible Materials , Biomedical Research , Humans , Joint Prosthesis , Materials Testing , Prosthesis Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...