Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 269: 110783, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32430283

ABSTRACT

The electrochemical oxidation (EO) of butyl paraben (BP) over boron-doped diamond (BDD) anode was studied in this work. Emphasis was put on degradation performance in various actual water matrices, including secondary treated wastewater (WW), bottled water (BW), surface water (SW), ultrapure water (UW), and ultrapure water spiked with humic acid (HA). Experiments were performed utilizing 0.1 M Na2SO4 as the electrolyte. Interestingly, matrix complexity was found to favor BP degradation, i.e. in the order WW ~ BW > SW > UW, thus implying some kind of synergy between the water matrix constituents, the reactive oxygen species (ROS) and the anode surface. The occurrence of chloride in water matrices favors reaction presumably due to the formation of chlorine-based oxidative species, and this can partially offset the need to work at increased current densities in the case of chlorine-free electrolytes. No pH effect in the range 3-8 on degradation was recorded. EO oxidation was also compared with a sulfate radical process using carbon black as activator of sodium persulfate. The matrix effect was, in this case, detrimental (i.e. UW > BW > WW), pinpointing the different behavior of different processes in similar environments.


Subject(s)
Diamond , Water Pollutants, Chemical , Boron , Electrodes , Oxidation-Reduction , Parabens , Sulfates
2.
Article in English | MEDLINE | ID: mdl-27791477

ABSTRACT

This study assesses the influence of the presence of suspended and dissolved matter on the efficiency of TiO2 photocatalysis for the removal of cyanide from coking wastewater. Photocatalytic processes were carried out at basic pH (pH 9) with titanium dioxide (1 g/L), artificial radiation (290-800 nm) and during different time periods (20-100 min). The first assays applied in aqueous solutions achieved promising results in terms of removing cyanide. The maximum cyanide removal obtained in coking wastewater was 89% after 80 min of irradiation in the presence of suspended and dissolved matter. The presence of suspended matter composed of coal improves the efficiency of the photocatalytic process due to the synergistic effect between carbon and TiO2. The absence of dissolved matter also improves the process due to the minimization of the hydroxyl radical scavenging effect produced by carbonate and bicarbonate ions. On the other hand, the presence of certain species in the real matrix such as silicon increases the activity of the titanium dioxide catalyst. In consequence, the improvement achieved by the photocatalytic process for the removal of cyanide in the absence of dissolved matter is counteracted.


Subject(s)
Coke , Cyanides/chemistry , Industrial Waste , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Humans , Photolysis , Waste Disposal, Fluid , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...