Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 73(5): 1005-1015, 2024 May.
Article in English | MEDLINE | ID: mdl-38300314

ABSTRACT

Rangeland-based livestock production constitutes a primary source of livelihood for many inhabitants of dryland regions. Their subsistence relies heavily on maintaining the productivity, biodiversity and services of these ecosystems. Harsh environmental conditions (e.g., drought) combined with land use intensification (e.g., overgrazing) make dryland ecosystems vulnerable and prone to degradation. However, the interplay between livestock grazing intensity and aridity conditions in driving the conservation and nutritional value of forage in arid and semi-arid rangelands is still not fully understood. In this study, we performed structural equation models (SEM) to assess the simultaneous direct and indirect effects of livestock grazing intensity and aridity level on community structure, diversity, biomass, forage production, forage C:N ratio and forage fiber composition in two semi-arid Mediterranean rangelands, NE Spain. Not surprisingly, we found that higher livestock grazing intensity led to lower community plant cover, especially when combined with higher aridity. However, both increasing grazing intensity and aridity were associated with higher forage production after one year of grazing exclusion. We did not find any adverse effect of livestock grazing on plant diversity, although plant species composition differed among grazing intensity levels. On the other hand, we found an aridity-driven trade-off in regard of the nutritional value of forage. Specifically, higher aridity was associated with a decrease in the least digestible fiber fraction (i.e., lignin) and an increase in forage C:N ratio. More interestingly, we found that livestock grazing modulated this trade-off by improving the overall forage nutritional value. Altogether, our results provide further insights into the management of semi-arid Mediterranean rangelands, pointing out that maintaining traditional rangeland-based livestock production may be a sustainable option as long as rangeland conservation (e.g., community plant cover) is not severely compromised.


Subject(s)
Ecosystem , Livestock , Animals , Spain , Biodiversity , Plants
2.
Glob Chang Biol ; 28(21): 6318-6332, 2022 11.
Article in English | MEDLINE | ID: mdl-35950624

ABSTRACT

Agents of global change commonly have a higher impact on island ecosystem dynamics. In the Mediterranean region, those dynamics have historically been influenced by anthropogenic impacts, for example, the introduction of invasive species and overharvesting of resources. Here, we analysed the spatio-temporal dynamics of vegetation in sa Dragonera island, which experienced a large environmental change ca. 4000 years ago by the arrival of humans. Anthropogenic impacts, such as herbivory by goats and over-logging, ended in the 1970s, while in 2011 the site became the largest Mediterranean island where rats were eradicated. Invasive rats and goats played the ecological role of two endemic species, the cave goat and the giant dormouse, which inhabited the island for more than 5 million years and were rapidly extinct by humans. We used Landsat imagery to explore NDVI as a proxy of vegetation productivity over the years 1984-2021, orthophotos to assess changes in land and vegetation covers and historical plant inventories to study the dynamics in plant diversity. Results showed that those indicators steadily increased both in spring and in summer, while the noise around the trends was partially explained by climate variability. The regime shifts in the temporal dynamics of vegetation productivity suggested a transient from a perturbed to a non-perturbed stable state. Trends in successional dynamics, spatial self-organization and plant diversity also showed the same type of transient dynamics. Historical perturbations related to harvesting (mainly the synergies between goat browsing, burning and forest over-logging) were more important than rat eradication or the influence of climate to explain the vegetation dynamics. Our study shows the transient nature of this small island ecosystem after 4000 years of perturbations and its current path towards vegetation dynamics more controlled by ecological interactions lacking large herbivores and omnivores, drought dynamics and the carrying capacity of the island.


Los agentes del cambio global suelen tener un mayor impacto en la dinámica de los ecosistemas insulares. En la región Mediterránea, esas dinámicas se han visto influenciadas históricamente por impactos antropogénicos, e.g. la introducción de especies invasoras y la sobreexplotación de los recursos. Analizamos aquí la dinámica espacio-temporal de la vegetación en la isla de sa Dragonera, que experimentó un gran cambio ambiental hace unos 4000 años por la llegada de los humanos. Los impactos antropogénicos, como la herbivoría de las cabras y la tala excesiva, terminaron en la década de 1970, mientras que en 2011 se convirtió en la isla mediterránea más grande donde se erradicaron las ratas. Las ratas y cabras invasoras desempeñaron el papel ecológico de dos especies endémicas, el miotrago y el lirón gigante, que habitaron la isla durante más de 5 millones de años y fueron rápidamente extinguidos por los humanos. Usamos imágenes de Landsat para explorar el NDVI (indicador de la productividad de la vegetación) durante los años 1984-2021, ortofotos para evaluar los cambios en la cobertura de la tierra y la vegetación e inventarios históricos de plantas para estudiar la dinámica de su diversidad. Los resultados mostraron que esos indicadores aumentaron constantemente tanto en primavera como en verano, mientras que el ruido en torno a las tendencias se explicaba en parte por la variabilidad climática. Los cambios de régimen en la dinámica temporal de la productividad de la vegetación sugirieron un transitorio de un estado estable perturbado a uno no perturbado. Las tendencias en la dinámica sucesional, la autoorganización espacial y la diversidad de plantas también mostraron el mismo tipo de dinámica transitoria. Las perturbaciones históricas relacionadas con la recolección (principalmente las sinergias entre el pastoreo de cabras, la quema y la tala excesiva de bosques) fueron más importantes que la erradicación de ratas o la influencia del clima para explicar la dinámica de la vegetación. Nuestro estudio muestra la naturaleza transitoria de este ecosistema después de 4000 años de perturbaciones y su trayectoria actual hacia una dinámica de la vegetación más controlada por interacciones ecológicas (que carecen de grandes herbívoros y omnívoros), dinámicas de sequía y la capacidad de carga de la isla.


Subject(s)
Anthropogenic Effects , Ecosystem , Animals , Climate Change , Conservation of Natural Resources , Forests , Goats , Humans , Plants , Rats
3.
BMC Ecol ; 18(1): 49, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30497452

ABSTRACT

BACKGROUND: The gypsovag shrub Cistus clusii is locally dominant in semi-arid gypsum plant communities of North-Eastern Spain. This species commonly grows in species-poor patches even though it has nurse potential, suggesting interference on neighbouring species. Other Cistus species exert a chemically mediated interference on plant communities, suggesting that it might be a common phenomenon in this genus. This study aimed investigating whether C. clusii exerts chemically mediated interference on neighbouring species in gypsum plant communities. We tested in a greenhouse whether aqueous extracts from C. clusii leaves (L), roots (R) and a mixture of both (RL) affected germination, seedling survival, and growth of nine native species of gypsum communities, including C. clusii itself. We further assessed in the field richness and abundance of plants under the canopy of C. clusii compared to Gypsophila struthium (shrub with a similar architecture having a nurse role) and in open patches. Finally, we specifically assessed in the field the influence of C. clusii on the presence of the species tested in the greenhouse experiment. RESULTS: Aqueous extracts from C. clusii (R and RL) negatively affected either germination or survival in four of nine species. In the field, richness and abundance of plants were lower under the canopy of C. clusii than under G. struthium, but higher than in open patches. Specifically, five of nine species were less frequent than expected under the canopy of C. clusii. CONCLUSIONS: Cistus clusii shows species-specific interference with neighbouring species in the community, which may be at least partially attributable to its phytotoxic activity. To our knowledge, this is the first report of species-specific interference by C. clusii.


Subject(s)
Antibiosis , Cistus/physiology , Germination/drug effects , Plant Extracts/adverse effects , Biota , Calcium Sulfate , Plant Leaves/chemistry , Plant Roots/chemistry , Spain , Species Specificity
4.
PLoS One ; 13(2): e0193421, 2018.
Article in English | MEDLINE | ID: mdl-29474430

ABSTRACT

Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain). Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community) beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC) to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic) and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the significance of allelopathy in nature, and consequently, results obtained under controlled conditions should be interpreted carefully.


Subject(s)
Allelopathy , Pheromones/metabolism , Pheromones/pharmacology , Plants/drug effects , Plants/metabolism
5.
PLoS One ; 10(3): e0118837, 2015.
Article in English | MEDLINE | ID: mdl-25790432

ABSTRACT

Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the 'short basal annual forbs and perennial forbs' group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of 'woody plants', an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the 'short basal annual forbs and perennial forbs' and the 'grasses' groups.


Subject(s)
Adaptation, Biological/physiology , Ecosystem , Models, Biological , Plant Physiological Phenomena , Economic Development , Likelihood Functions , Spain , Species Specificity
6.
Ecol Evol ; 5(22): 5305-5317, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30151133

ABSTRACT

Plant-plant interactions are among the fundamental processes that shape structure and functioning of arid and semi-arid plant communities. Despite the large amount of studies that have assessed the relationship between plant-plant interactions (i.e., facilitation and competition) and diversity, often researchers forget a third kind of interaction, known as allelopathy. We examined the effect of plant-plant interactions of three dominant species: the perennial grass Lygeum spartum, the allelopathic dwarf shrub Artemisia herba-alba, and the nurse shrub Salsola vermiculata, on plant diversity and species composition in a semi-arid ecosystem in NE Spain. Specifically, we quantified the interaction outcome (IO) based on species co-occurrence, we analyzed diversity by calculation of the individual species-area relationship (ISAR), and compositional changes by calculation of the Chao-Jaccard similarity index. We found that S. vermiculata had more positive IO values than L. spartum, and A. herba-alba had values between them. Lygeum spartum and A. herba-alba acted as diversity repellers, whereas S. vermiculata acted as a diversity accumulator. As aridity increased, A. herba-alba transitioned from diversity repeller to neutral and S. vermiculata transitioned from neutral to diversity accumulator, while L. spartum remained as diversity repeller. Artemisia herba-alba had more perennial grass species in its local neighborhood than expected by the null model, suggesting some tolerance of this group to its "chemical neighbor". Consequently, species that coexist with A. herba-alba were very similar among different A. herba-alba individuals. Our findings highlight the role of the nurse shrub S. vermiculata as ecosystem engineer, creating and maintaining patches of diversity, as well as the complex mechanism that an allelopathic plant may have on diversity and species assemblage. Further research is needed to determine the relative importance of allelopathy and competition in the overall interference of allelopathic plants.

7.
Nature ; 449(7159): 213-7, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17851524

ABSTRACT

Humans and climate affect ecosystems and their services, which may involve continuous and discontinuous transitions from one stable state to another. Discontinuous transitions are abrupt, irreversible and among the most catastrophic changes of ecosystems identified. For terrestrial ecosystems, it has been hypothesized that vegetation patchiness could be used as a signature of imminent transitions. Here, we analyse how vegetation patchiness changes in arid ecosystems with different grazing pressures, using both field data and a modelling approach. In the modelling approach, we extrapolated our analysis to even higher grazing pressures to investigate the vegetation patchiness when desertification is imminent. In three arid Mediterranean ecosystems in Spain, Greece and Morocco, we found that the patch-size distribution of the vegetation follows a power law. Using a stochastic cellular automaton model, we show that local positive interactions among plants can explain such power-law distributions. Furthermore, with increasing grazing pressure, the field data revealed consistent deviations from power laws. Increased grazing pressure leads to similar deviations in the model. When grazing was further increased in the model, we found that these deviations always and only occurred close to transition to desert, independent of the type of transition, and regardless of the vegetation cover. Therefore, we propose that patch-size distributions may be a warning signal for the onset of desertification.


Subject(s)
Desert Climate , Ecosystem , Plant Development , Greece , Mediterranean Region , Models, Biological , Morocco , Population Dynamics , Spain , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...