Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 845: 157236, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35810909

ABSTRACT

Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Bioreactors/microbiology , Chlorine , Denitrification , Groundwater/microbiology , Nitrates/analysis , Nitrogen Oxides , Water Pollutants, Chemical/analysis
2.
Water Res ; 206: 117736, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34656821

ABSTRACT

Groundwater pollution and salinization have increased steadily over the years. As the balance between water demand and availability has reached a critical level in many world regions, a sustainable approach for the management (including recovery) of saline water resources has become essential. A 3-compartment cell configuration was tested for a new application based on the simultaneous denitrification and desalination of nitrate-contaminated saline groundwater and the recovery of value-added chemicals. The cells were initially operated in potentiostatic mode to promote autotrophic denitrification at the bio-cathode, and then switched to galvanostatic mode to improve the desalination of groundwater in the central compartment. The average nitrate removal rate achieved was 39±1 mgNO3--N L-1 d-1, and no intermediates (i.e., nitrite and nitrous oxide) were observed in the effluent. Groundwater salinity was considerably reduced (average chloride removal was 63±5%). Within a circular economy approach, part of the removed chloride was recovered in the anodic compartment and converted into chlorine, which reached a concentration of 26.8±3.4 mgCl2 L-1. The accumulated chlorine represents a value-added product, which could also be dosed for disinfection in water treatment plants. With this cell configuration, WHO and European legislation threshold limits for nitrate (11.3 mgNO3--N L-1) and salinity (2.5 mS cm-1) in drinking water were met, with low specific power consumptions (0.13±0.01 kWh g-1NO3--Nremoved). These results are promising and pave the ground for successfully developing a sustainable technology to tackle an urgent environmental issue.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Chlorides , Chlorine , Denitrification , Nitrates/analysis , Water Pollutants, Chemical/analysis
3.
Pathogens ; 9(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906374

ABSTRACT

Late lactation is a critical moment for making mastitis management decisions, but in small ruminants the reliability of diagnostic tests is typically lower at this stage. We evaluated somatic cell counts (SCC) and cathelicidins (CATH) in late lactation sheep and goat milk for their relationship with intramammary infections (IMI), as diagnosed by bacteriological culture (BC). A total of 315 sheep and 223 goat half-udder milk samples collected in the last month of lactation were included in the study. IMI prevalence was 10.79% and 15.25%, respectively, and non-aureus staphylococci were the most common finding. Taking BC as a reference, the diagnostic performance of SCC and CATH was quite different in the two species. In sheep, receiver operating characteristic (ROC) analysis produced a higher area under the curve (AUC) value for CATH than SCC (0.9041 versus 0.8829, respectively). Accordingly, CATH demonstrated a higher specificity than SCC (82.92% versus 73.67%, respectively) at comparable sensitivity (91.18%). Therefore, CATH showed a markedly superior diagnostic performance than SCC in late lactation sheep milk. In goats, AUC was <0.67 for both parameters, and CATH was less specific than SCC (61.90% versus 65.08%) at comparable sensitivity (64.71%). Therefore, both CATH and SCC performed poorly in late lactation goats. In conclusion, sheep can be screened for mastitis at the end of lactation, while goats should preferably be tested at peak lactation. In late lactation sheep, CATH should be preferred over SCC for its higher specificity, but careful cost/benefit evaluations will have to be made.

4.
Res Vet Sci ; 128: 129-134, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31783263

ABSTRACT

A recently developed bovine cathelicidin (CATH) ELISA was evaluated in the dairy buffalo (Bubalus bubalis) by testing 618 quarter milk samples from a herd with subclinical mastitis cases. Somatic cell count (SCC) and bacteriological culture (BC) were carried out on the same samples for comparison. Out of 618 quarters, 258 (41.75%) were positive to CATH, 289 (46.76%) had SCC > 200,000 cells/mL, and 457 (73.95%) were positive to BC. The most prevalent microorganism was Staphylococcus aureus (SAU, 35.76% of all quarters), followed by non-aureus staphylococci (NAS, 22.17% of all quarters). Clinical mastitis quarters were only 7 (1.13%). CATH levels were significantly higher in clinical quarters and in high SCC, BC-positive quarters than in healthy, low SCC, BC-negative quarters. The highest median values were observed for SAU and the lowest for NAS. Differences among microorganism classes were generally more significant for SCC than for CATH. Test characteristics of the CATH ELISA, evaluated by considering as true positives all BC-positive quarters with SCC > 200,000 cells/mL (N = 242), and as true negatives all sterile quarters with SCC < 200,000 cells/mL (N = 44), were as follows: sensitivity 57.85%, specificity 84.09%, positive predictive value 95.24%, negative predictive value 26.62%, accuracy 61.89%. Therefore, the bovine CATH ELISA showed a fair sensitivity and a good specificity in detecting water buffalo mastitis.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Buffaloes , Enzyme-Linked Immunosorbent Assay/veterinary , Mastitis/veterinary , Milk/chemistry , Animals , Cattle , Cell Count/veterinary , Diagnostic Tests, Routine , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Mastitis/diagnosis , Milk/cytology , Milk/microbiology , Sensitivity and Specificity , Staphylococcal Infections/diagnosis , Staphylococcal Infections/veterinary , Staphylococcus aureus/growth & development , Cathelicidins
5.
Sci Rep ; 9(1): 15850, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676851

ABSTRACT

Subclinical mastitis by Staphylococcus aureus (SAU) and by non-aureus staphylococci (NAS) is a major issue in the water buffalo. To understand its impact on milk, 6 quarter samples with >3,000,000 cells/mL (3 SAU-positive and 3 NAS-positive) and 6 culture-negative quarter samples with <50,000 cells/mL were investigated by shotgun proteomics and label-free quantitation. A total of 1530 proteins were identified, of which 152 were significantly changed. SAU was more impacting, with 162 vs 127 differential proteins and higher abundance changes (P < 0.0005). The 119 increased proteins had mostly structural (n = 43, 28.29%) or innate immune defence functions (n = 39, 25.66%) and included vimentin, cathelicidins, histones, S100 and neutrophil granule proteins, haptoglobin, and lysozyme. The 33 decreased proteins were mainly involved in lipid metabolism (n = 13, 59.10%) and included butyrophilin, xanthine dehydrogenase/oxidase, and lipid biosynthetic enzymes. The same biological processes were significantly affected also upon STRING analysis. Cathelicidins were the most increased family, as confirmed by western immunoblotting, with a stronger reactivity in SAU mastitis. S100A8 and haptoglobin were also validated by western immunoblotting. In conclusion, we generated a detailed buffalo milk protein dataset and defined the changes occurring in SAU and NAS mastitis, with potential for improving detection (ProteomeXchange identifier PXD012355).


Subject(s)
Buffaloes , Mastitis, Bovine , Milk Proteins/biosynthesis , Milk , Proteomics , Staphylococcal Infections , Staphylococcus aureus/metabolism , Animals , Buffaloes/metabolism , Buffaloes/microbiology , Cattle , Mastitis, Bovine/metabolism , Mastitis, Bovine/microbiology , Milk/metabolism , Milk/microbiology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary
6.
J Dairy Res ; 86(2): 217-221, 2019 May.
Article in English | MEDLINE | ID: mdl-31156071

ABSTRACT

This research communication reports the evaluation of cathelicidin in dairy goat milk for its relationship with the somatic cell count (SCC) and microbial culture results. Considering the limited performances of SCC for mastitis monitoring in goats, there is interest in evaluating alternative diagnostic tools. Cathelicidin is an antimicrobial protein involved in innate immunity of the mammary gland. In this work, half-udder milk was sampled bimonthly from a herd of 37 Alpine goats along an entire lactation and tested with the cathelicidin ELISA together with SCC and bacterial culture. Cathelicidin and SCC showed a strong correlation (r = 0.72; n = 360 milk samples). This was highest in mid-lactation (r = 0.83) and lowest in late lactation (r = 0.61), and was higher in primiparous (0.80, n = 130) than in multiparous goats (0.71, n = 230). Both markers increased with stage of lactation, but cathelicidin increased significantly less than SCC. In addition, peak level in late lactation was lower for cathelicidin (5.05-fold increase) than for SCC (7.64-fold increase). Twenty-one (5.8%) samples were positive to bacteriological culture, 20 for coagulase-negative staphylococci and one for Streptococcus spp.; 18 of them were positive to the cathelicidin ELISA (85.71% sensitivity). Sensitivity of SCC >500 000 and of SCC >1 000 000 cells/ml was lower (71.43 and 23.81%, respectively). Therefore, the high correlation of cathelicidin with SCC during the entire lactation, along with its lower increase in late lactation and good sensitivity in detecting intramammary infection (IMI), indicate a potential for monitoring subclinical mastitis in dairy goats. However, based on this preliminary assessment, specificity should be improved (40.41% for cathelicidin vs. 54.57 and 67.85% for SCC >500 000 and >1 000 000 cells/ml, respectively). Therefore, the application of cathelicidin for detecting goat IMI will require further investigation and optimization, especially concerning the definition of diagnostic thresholds.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Goats/physiology , Lactation/physiology , Milk/cytology , Animals , Antimicrobial Cationic Peptides/chemistry , Female , Cathelicidins
7.
Sensors (Basel) ; 19(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669626

ABSTRACT

Molecular biomarkers are very important in biology, biotechnology and even in medicine, but it is quite hard to convert biology-related signals into measurable data. For this purpose, amperometric biosensors have proven to be particularly suitable because of their specificity and sensitivity. The operation and shelf stability of the biosensor are quite important features, and storage procedures therefore play an important role in preserving the performance of the biosensors. In the present study two different designs for both glucose and lactate biosensor, differing only in regards to the containment net, represented by polyurethane or glutharaldehyde, were studied under different storage conditions (+4, -20 and -80 °C) and monitored over a period of 120 days, in order to evaluate the variations of kinetic parameters, as VMAX and KM, and LRS as the analytical parameter. Surprisingly, the storage at -80 °C yielded the best results because of an unexpected and, most of all, long-lasting increase of VMAX and LRS, denoting an interesting improvement in enzyme performances and stability over time. The present study aimed to also evaluate the impact of a short-period storage in dry ice on biosensor performances, in order to simulate a hypothetical preparation-conservation-shipment condition.


Subject(s)
Biosensing Techniques/methods , Cold Temperature , Glucose/analysis , Lactic Acid/analysis , Preservation, Biological , Dry Ice , Equipment Design , Kinetics , Time Factors
8.
Food Chem ; 218: 479-486, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27719939

ABSTRACT

The development and applications of biosensors in the food industry has had a rapid grown due to their sensitivity, specificity and simplicity of use with respect to classical analytical methods. In this study, glucose and ethanol amperometric biosensors integrated with a wireless telemetry system were developed and used for the monitoring of top and bottom fermentations in beer wort samples. The collected data were in good agreement with those obtained by reference methods. The simplicity of construction, the low cost and the short time of analysis, combined with easy interpretation of the results, suggest that these devices could be a valuable alternative to conventional methods for monitoring fermentation processes in the food industry.


Subject(s)
Beer/analysis , Biosensing Techniques/methods , Ethanol/analysis , Fermentation , Food Industry , Glucose/analysis , Telemetry
9.
Brain Res ; 1538: 159-71, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24080403

ABSTRACT

The neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats. MPTP (25mg/kg, 15mg/kg, 10mg/kg) was intraperitoneally administered for three consecutive days. MAO-B inhibitor pargyline (15mg/kg) was systemically administered before neurotoxin administration. The first MPTP dose induced an increase in dialysate dopamine and a decrease of DOPAC levels in striatal dialysate. After the first neurotoxin administration, increases in striatal glucose, lactate, pyruvate, lactate/pyruvate (L/P) and lactate/glucose (L/G) ratios were observed. Subsequent MPTP administrations showed a progressive reduction of dopamine, glucose and pyruvate levels with a concomitant further increase in lactate levels and L/P and L/G ratios. At day 1, pargyline pre-treatment attenuated the MPTP-induced changes in all studied analytes. Starting from day 2, pargyline prevented the depletion of dopamine, glucose and pyruvate while reduced the increase of lactate, L/P ratio and L/G ratio. These in vivo results suggest a pargyline neuroprotection role against the MPTP-induced energetic impairment consequent to mitochondrial damage. This neuroprotective effect was confirmed by TH immunostaining of the substantia nigra.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Energy Metabolism/drug effects , MPTP Poisoning/metabolism , Monoamine Oxidase Inhibitors/therapeutic use , Pargyline/therapeutic use , Animals , Male , Rats , Rats, Wistar
10.
Talanta ; 85(4): 1933-40, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21872041

ABSTRACT

Microdialysis is an extensively used technique for both in vivo and in vitro experiments, applicable to animal and human studies. In neurosciences, the in vivo microdialysis is usually performed to follow changes in the extracellular levels of substances and to monitor neurotransmitters release in the brain of freely moving animals. Catecholamines, such as dopamine and their related compounds, are involved in the neurochemistry and in the physiology of mental diseases and neurological disorders. It is generally supposed that the brain's energy requirement is supplied by glucose oxidation. More recently, lactate was proposed to be the metabolic substrate used by neurons during synaptic activity. In our study, an innovative microdialysis approach for simultaneous monitoring of catecholamines, indolamines, glutamate and energy substrates in the striatum of freely moving rats, using an asymmetric perfusion flow rate on microdialysis probe, is described. As a result of this asymmetric perfusion, two samples are available from the same brain region, having the same analytes composition but different concentrations. The asymmetric flow perfusion could be a useful tool in neurosciences studies related to brain's energy requirement, such as toxin-induced models of Parkinson's disease.


Subject(s)
Brain/metabolism , Microdialysis/methods , Neurotransmitter Agents/metabolism , Animals , Energy Metabolism , Male , Microdialysis/instrumentation , Neostriatum/metabolism , Perfusion , Rats , Reproducibility of Results , Time Factors
11.
CNS Neurol Disord Drug Targets ; 9(4): 482-90, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20522009

ABSTRACT

The classical animal models of Parkinson's disease (PD) rely on the use of neurotoxins, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine and, more recently, the agricultural chemicals paraquat and rotenone, to deplete dopamine (DA). These neurotoxins elicit motor deficits in different animal species although MPTP fails to induce a significant dopaminergic neurodegeneration in rats. In the attempt to better reproduce the key features of PD, in particular the progressive nature of neurodegeneration, alternative PD models have been developed, based on the genetic and neuropathological links between -synuclein ( -syn) and PD. In vivo microdialysis was used to investigate extracellular striatal DA dynamics in MPTP- and -syn-generated rodent models of PD. Acute and sub-acute MPTP intoxication of mice both induce prolonged release of striatal DA. Such DA release may be considered the first step in MPTP-induced striatal DA depletion and nigral neuron death, mainly through reactive oxygen species generation. Although MPTP induces DA reduction, neurochemical and motor recovery starts immediately after the end of treatment, suggesting that compensatory mechanisms are activated. Thus, the MPTP mouse model of PD may be unsuitable for closely reproducing the features of the human disease and predicting potential long-term therapeutic effects, in terms of both striatal extracellular DA and behavioral outcome. In contrast, the -syn-generated rat model of PD does not suffer from a massive release of striatal DA during induction of the nigral lesion, but rather is characterized by a prolonged reduction in baseline DA and nicotine-induced increases in dialysate DA levels. These results are suggestive of a stable nigrostriatal lesion with a lack of dopaminergic neurochemical recovery. The -syn rat model thus reproduces the initial stage and slow development of PD, with a time-dependent impairment in motor function. This article will describe the above experimental PD models and demonstrate the utility of microdialysis for their characterization.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Disease Models, Animal , Dopamine/physiology , Microdialysis , Neurotoxins/pharmacology , Parkinson Disease/metabolism , Parkinsonian Disorders/metabolism , alpha-Synuclein/metabolism , Animals , Brain/drug effects , Brain/metabolism , Dopamine/metabolism , Humans , Mice , Mice, Transgenic/genetics , Mice, Transgenic/metabolism , Parkinsonian Disorders/chemically induced , Rats , Rats, Transgenic/genetics , Rats, Transgenic/metabolism , alpha-Synuclein/physiology
12.
Anal Chem ; 82(12): 5134-40, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20503971

ABSTRACT

Ascorbic acid (AA), one of the principal micronutrients in horticultural crops, plays a key role in the human metabolism, and its determination in food products has a great significance. Citrus fruits are rich in AA, but its content is highly susceptible to change during postharvest processing and storage. We present a new ultralow-cost system, constituted of an amperometric microsensor composed of three rod carbon electrodes connected to a telemetric device, for online detection of AA in orange juice, as an alternative to conventional analytical methods. The in vitro calibration, ranged from 0 to 5 mM, and AA juice content was calculated by adding low volumes of sample into an acetate buffer solution at a constant potential of +120 mV vs carbon pseudoreference. This new approach, which is simple, expandable, and inexpensive, seems appropriate for large scale commercial use.


Subject(s)
Ascorbic Acid/analysis , Citrus/chemistry , Electrochemical Techniques/instrumentation , Telemetry/instrumentation , Calibration , Electrochemical Techniques/economics , Equipment Design , Telemetry/economics
13.
Anal Chem ; 81(6): 2235-41, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19222224

ABSTRACT

A miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter. The oxygen current is converted to a digital value by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC). The digital data is sent to a personal computer using a six-byte packet protocol by means of a miniaturized 434 MHz amplitude modulation (AM) transmitter. The receiver unit is connected to a personal computer (PC) via a universal serial bus. Custom developed software allows the PC to store and plot received data. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption, and good linear response in the nanoampere current range. The in vivo results confirmed previously published observations on oxygen dynamics in the striatum of freely moving rats. The system serves as a rapid and reliable model for studying the effects of different drugs on brain oxygen and brain blood flow and it is suited to work with direct-reduction sensors or O(2)-consuming biosensors.


Subject(s)
Biosensing Techniques/methods , Brain/metabolism , Oxygen/analysis , Acetazolamide/pharmacology , Animals , Biosensing Techniques/instrumentation , Corpus Striatum/metabolism , Male , Miniaturization , Rats , Rats, Sprague-Dawley , Telemetry
14.
Sensors (Basel) ; 9(4): 2511-23, 2009.
Article in English | MEDLINE | ID: mdl-22574029

ABSTRACT

In this study we present the real-time monitoring of three key brain neurochemical species in conscious rats using implantable amperometric electrodes interfaced to a biotelemetric device. The new system, derived from a previous design, was coupled with carbon-based microsensors and a platinum-based biosensor for the detection of ascorbic acid (AA), O(2) and glucose in the striatum of untethered, freely-moving rats. The miniaturized device consisted of a single-supply sensor driver, a current-to-voltage converter, a microcontroller and a miniaturized data transmitter. The redox currents were digitized to digital values by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC), and sent to a personal computer by means of a miniaturized AM transmitter. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption and good linear response in the nanoampere current range. The in-vivo results confirmed previously published observations on striatal AA, oxygen and glucose dynamics recorded in tethered rats. This approach, based on simple and inexpensive components, could be used as a rapid and reliable model for studying the effects of different drugs on brain neurochemical systems.

15.
Anal Biochem ; 380(2): 323-30, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18577368

ABSTRACT

A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.


Subject(s)
Dopamine/analysis , Electrochemistry/methods , Microdialysis/methods , Animals , Calcium/pharmacology , Calibration , Cell Count , Cell Survival , Dopamine/metabolism , Electrochemistry/instrumentation , Microdialysis/instrumentation , PC12 Cells , Potassium Chloride/pharmacology , Rats , Reproducibility of Results , Secretory Rate/drug effects , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...