Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Eur J Sport Sci ; 24(6): 777-787, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874956

ABSTRACT

Blood flow restriction (BFR) is increasingly being used to enhance aerobic performance in endurance athletes. This study examined physiological responses to BFR applied in recovery phases within a high-intensity interval training (HIIT) session in trained cyclists. Eleven competitive road cyclists (mean ± SD, age: 28 ± 7 years, body mass: 69 ± 6 kg, peak oxygen uptake: 65 ± 9 mL · kg-1 · min-1) completed two randomised crossover conditions: HIIT with (BFR) and without (CON) BFR applied during recovery phases. HIIT consisted of six 30-s cycling bouts at an intensity equivalent to 85% of maximal 30-s power (523 ± 93 W), interspersed with 4.5-min recovery. BFR (200 mmHg, 12 cm cuff width) was applied for 2-min in the early recovery phase between each interval. Pulmonary gas exchange (V̇O2, V̇CO2, and V̇E), tissue oxygen saturation index (TSI), heart rate (HR), and serum vascular endothelial growth factor concentration (VEGF) were measured. Compared to CON, BFR increased V̇CO2 and V̇E during work bouts (both p < 0.05, dz < 0.5), but there was no effect on V̇O2, TSI, or HR (p > 0.05). In early recovery, BFR decreased TSI, V̇O2, V̇CO2, and V̇E (all p < 0.05, dz > 0.8) versus CON, with no change in HR (p > 0.05). In late recovery, when BFR was released, V̇O2, V̇CO2, V̇E, and HR increased, but TSI decreased versus CON (all p < 0.05, dz > 0.8). There was a greater increase in VEGF at 3-h post-exercise in BFR compared to CON (p < 0.05, dz > 0.8). Incorporating BFR into HIIT recovery phases altered physiological responses compared to exercise alone.


Subject(s)
Bicycling , Cross-Over Studies , Heart Rate , High-Intensity Interval Training , Oxygen Consumption , Pulmonary Gas Exchange , Humans , Bicycling/physiology , Adult , Heart Rate/physiology , Oxygen Consumption/physiology , Male , Young Adult , Pulmonary Gas Exchange/physiology , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/metabolism , Regional Blood Flow/physiology , Athletic Performance/physiology , Oxygen Saturation/physiology
2.
Pediatr Pulmonol ; 58(11): 3255-3263, 2023 11.
Article in English | MEDLINE | ID: mdl-37646125

ABSTRACT

INTRODUCTION: Dynamic computed tomography (dCT) gives real-time physiological information and objective descriptions of airway narrowing in tracheobronchomalacia (TBM). There is a paucity of literature in the evaluation of TBM by dCT in premature infants with bronchopulmonary dysplasia (BPD). The aim of this study is to describe the findings of dCT and resultant changes in management in premature infants with TBM. METHODS: A retrospective study of 70 infants was performed. Infants included were <32 weeks gestation without major anomalies. TBM was defined as ≥50% expiratory reduction in cross-sectional area with severity defined as mild (50%-75%), moderate (≥75%-90%), or severe (≥90%). RESULTS: Dynamic CT diagnosed malacia in 53% of infants. Tracheomalacia was identified in 49% of infants with severity as 76% mild, 18% moderate, and 6% severe. Bronchomalacia was identified in 43% of infants with varying severity (53% mild, 40% moderate, 7% severe). Resultant management changes included PEEP titration (44%), initiation of bethanechol (23%), planned tracheostomy (20%), extubation trial (13%), and inhaled ipratropium bromide (7%). CONCLUSION: Dynamic CT is a useful noninvasive diagnostic tool for airway evaluation of premature infants. Presence and severity of TBM can provide actionable information to guide more precise clinical decision making.


Subject(s)
Bronchopulmonary Dysplasia , Tracheobronchomalacia , Infant, Newborn , Infant , Humans , Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/diagnostic imaging , Retrospective Studies , Infant, Premature , Tracheobronchomalacia/complications , Tracheobronchomalacia/diagnostic imaging , Tomography, X-Ray Computed
3.
SAGE Open Med Case Rep ; 11: 2050313X231172672, 2023.
Article in English | MEDLINE | ID: mdl-37205159

ABSTRACT

Necrotizing enterocolitis is a disease process of intestinal disruption which has been associated with gastrointestinal microbial alterations after antibiotic exposure. Treatment guidelines and antibiotic exposure for congenital syphilis have historically been based on limited evidence. This case presents a term infant who developed necrotizing enterocolitis after treatment for congenital syphilis.

4.
Microcirculation ; 30(4): e12799, 2023 05.
Article in English | MEDLINE | ID: mdl-36635617

ABSTRACT

OBJECTIVE: Disease complications can alter vascular network morphology and disrupt tissue functioning. Microvascular diseases of the retina are assessed by visual inspection of retinal images, but this can be challenging when diseases exhibit silent symptoms or patients cannot attend in-person meetings. We examine the performance of machine learning algorithms in detecting microvascular disease when trained on statistical and topological summaries of segmented retinal vascular images. METHODS: We compute 13 separate descriptor vectors (5 statistical, 8 topological) to summarize the morphology of retinal vessel segmentation images and train support vector machines to predict each image's disease classification from the summary vectors. We assess the performance of each descriptor vector, using five-fold cross validation to estimate their accuracy. We apply these methods to four datasets that were assembled from four existing data repositories; three datasets contain segmented retinal vascular images from one of the repositories, whereas the fourth "All" dataset combines images from four repositories. RESULTS: Among the 13 total descriptor vectors considered, either a statistical Box-counting descriptor vector or a topological Flooding descriptor vector achieves the highest accuracy levels. On the combined "All" dataset, the Box-counting vector outperforms all other descriptors, including the topological Flooding vector which is sensitive to differences in the annotation styles between the different datasets. CONCLUSION: Our work represents a first step to establishing which computational methods are most suitable for identifying microvascular disease and assessing their current limitations. These methods could be incorporated into automated disease assessment tools.


Subject(s)
Retina , Retinal Vessels , Humans , Retina/diagnostic imaging , Retinal Vessels/diagnostic imaging , Algorithms
5.
Int J Sports Physiol Perform ; 17(11): 1606-1613, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36068071

ABSTRACT

PURPOSE: Leading a 4-km team pursuit (TP) requires high-intensity efforts above critical power (CP) that deplete riders' finite work capacity (W'), whereas riders following in the aerodynamic draft may experience some recovery due to reduced power demands. This study aimed to determine how rider ability and CP and W' measures impact TP performance and the extent to which W' can reconstitute during recovery positions in a TP race. METHODS: Three TP teams, each consisting of 4 males, completed individual performance tests to determine their CP and W'. Teams were classified based on their performance level as international (INT), national (NAT), or regional (REG). Each team performed a TP on an indoor velodrome (INT: 3:49.9; NAT: 3:56.7; and REG: 4:05.4; min:s). Ergometer-based TP simulations with an open-ended interval to exhaustion were performed to measure individual ability to reconstitute W' at 25 to 100 W below CP. RESULTS: The INT team possessed higher CP (407 [4] W) than both NAT (381 [13] W) and REG (376 [15] W) (P < .05), whereas W' was similar between teams (INT: 27.2 [2.8] kJ; NAT: 29.3 [2.4] kJ; and REG: 28.8 [1.6] kJ; P > .05). The INT team expended 104% (5%) of their initial W' during the TP and possessed faster rates of recovery than NAT and REG at 25 and 50 W below CP (P < .05). CONCLUSIONS: The CP and rate of W' reconstitution have a greater impact on TP performance than W' magnitude and can differentiate TP performance level.


Subject(s)
Exercise Test , Physical Endurance , Male , Humans , Oxygen Consumption
6.
Cureus ; 14(4): e23918, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35530903

ABSTRACT

Pseudohypoaldosteronism type 1 (PHA1) may manifest in the neonatal period as a life-threatening salt-wasting syndrome providing challenges in recognition and treatment. This case describes a newborn who developed severe dehydration and electrolyte imbalances and subsequently was found to have a novel SCNN1B gene variant resulting in autosomal recessive systemic PHA1.

8.
Methods Mol Biol ; 1851: 135-170, 2019.
Article in English | MEDLINE | ID: mdl-30298396

ABSTRACT

Ancestral protein sequence reconstruction is a powerful technique for explicitly testing hypotheses about the evolution of molecular function, allowing researchers to meticulously dissect how historical changes in protein sequence impacted functional repertoire by altering the protein's 3D structure. These techniques have provided concrete, experimentally validated insights into ancient evolutionary processes and help illuminate the complex relationship between protein sequence, structure, and function. Inferring the protein family phylogenies on which ancestral sequence reconstruction depends and reconstructing the sequences, themselves, are amenable to high-throughput computational analysis. However, determining the structures of ancestral-reconstructed proteins and characterizing their functions typically rely on time-consuming and expensive laboratory analyses, limiting most current studies to examining a relatively small number of specific hypotheses. For this reason, we have little detailed, unbiased information about how molecular function evolves across large protein family phylogenies. Here we describe a generalized protocol that integrates ancestral sequence reconstruction with structural homology modeling and structure-based molecular affinity prediction to characterize historical changes in protein function across families with thousands of individual sequences. We highlight key steps in the analysis protocol requiring particularly careful attention to avoid introducing potential errors as well as steps for which computationally efficient subroutines can be substituted for more intensive approaches, allowing researchers to scale the analysis up or down, depending on available resources and requirements for reproducibility and scientific rigor. In our view, this approach provides a compelling compliment to more laboratory-intensive procedures, generating important contextual information that can help guide detailed experiments.


Subject(s)
Evolution, Molecular , Proteins/chemistry , Amino Acid Sequence , Phylogeny , Proteins/classification
9.
BMC Evol Biol ; 16(1): 241, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27825296

ABSTRACT

BACKGROUND: Although resurrecting ancestral proteins is a powerful tool for understanding the molecular-functional evolution of gene families, nearly all studies have examined proteins functioning in relatively stable biological processes. The extent to which more dynamic systems obey the same 'rules' governing stable processes is unclear. Here we present the first detailed investigation of the functional evolution of the RIG-like receptors (RLRs), a family of innate immune receptors that detect viral RNA in the cytoplasm. RESULTS: Using kinetic binding assays and molecular dynamics simulations of ancestral proteins, we demonstrate how a small number of adaptive protein-coding changes repeatedly shifted the RNA preference of RLRs throughout animal evolution by reorganizing the shape and electrostatic distribution across the RNA binding pocket, altering the hydrogen bond network between the RLR and its RNA target. In contrast to observations of proteins involved in metabolism and development, we find that RLR-RNA preference 'flip flopped' between two functional states, and shifts in RNA preference were not always coupled to gene duplications or speciation events. We demonstrate at least one reversion of RLR-RNA preference from a derived to an ancestral function through a novel structural mechanism, indicating multiple structural implementations of similar functions. CONCLUSIONS: Our results suggest a model in which frequent shifts in selection pressures imposed by an evolutionary arms race preclude the long-term functional optimization observed in stable biological systems. As a result, the evolutionary dynamics of immune receptors may be less constrained by structural epistasis and historical contingency.


Subject(s)
Evolution, Molecular , Immunity, Innate , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Amino Acid Sequence , Animals , Gene Duplication , Humans , Models, Molecular , Phylogeny , RNA, Viral/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Sequence Alignment , Signal Transduction
10.
Environ Sci Technol ; 48(12): 6702-9, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24857308

ABSTRACT

This study evaluated the role of physical and biological filter characteristics on the reduction of MS2 bacteriophage in biosand filters (BSFs). Three full-scale concrete Version 10 BSFs, each with a 55 cm sand media depth and a 12 L charge volume, reached 4 log10 reduction of MS2 within 43 days of operation. A consistently high reduction of MS2 between 4 log10 and 7 log10 was demonstrated for up to 294 days. Further examining one of the filters revealed that an average of 2.8 log10 reduction of MS2 was achieved within the first 5 cm of the filter, and cumulative virus reduction reached an average of 5.6 log10 after 240 days. Core sand samples from this filter were taken for protein, carbohydrate, and genomic extraction. Higher reduction of MS2 in the top 5 cm of the sand media (0.56 log10 reduction per cm vs 0.06 log10 reduction per cm for the rest of the filter depth) coincided with greater diversity of microbial communities and increased concentrations of carbohydrates. In the upper layers, "Candidatus Nitrosopumilus maritimus" and "Ca. Nitrospira defluvii" were found as dominant populations, while significant amounts of Thiobacillus-related OTUs were detected in the lower layers. Proteolytic bacterial populations such as the classes Sphingobacteria and Clostridia were observed over the entire filter depth. Thus, this study provides the first insight into microbial community structures that may play a role in MS2 reduction in BSF ecosystems. Overall, besides media ripening and physical reduction mechanisms such as filter depth and long residence time (45 min vs 24 ± 8.5 h), the establishment of chemolithotrophs and proteolytic bacteria could greatly enhance the reduction of MS2.


Subject(s)
Bacteria/growth & development , Filtration/instrumentation , Levivirus/isolation & purification , Silicon Dioxide/chemistry , Soil Microbiology , Bacteria/genetics , Bacterial Proteins/analysis , Biodiversity , Carbohydrates/analysis , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Time Factors
11.
Environ Sci Technol ; 47(19): 11004-12, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23978054

ABSTRACT

Human rotavirus Wa and porcine rotavirus OSU solutions were irradiated with simulated solar UV and visible light in the presence of different photosensitizers dissolved in buffered solutions. For human rotavirus, the exogenous effects were greater than the endogenous effects under irradiation with full spectrum and UVA and visible light at 25 °C. For porcine rotavirus, the exogenous effects with UVA and visible light irradiation were only observed at high temperatures, >40 °C. The results from dark experiments conducted at different temperatures suggest that porcine rotavirus has higher thermostability than human rotavirus. Concentrations of 3'-MAP excited triplet states of 1.8 fM and above resulted in significant human rotavirus inactivation. The measured excited triplet state concentrations of ≤0.45 fM produced by UVA and visible light irradiation of natural dissolved organic matter solutions were likely not directly responsible for rotavirus inactivation. Instead, the linear correlation for human rotavirus inactivation rate constant (kobs) with the phenol degradation rate constant (kexp) found in both 1 mM NaHCO3 and 1 mM phosphate-buffered solutions suggested that OH radical was a major reactive species for the exogenous inactivation of rotaviruses. Linear correlations between rotavirus kobs and specific UV254 nm absorbance of two river-dissolved organic matter and two effluent organic matter isolates indicated that organic matter aromaticity may help predict formation of radicals responsible for rotavirus inactivation. The results from this study also suggested that the differences in rotavirus strains should be considered when predicting solar inactivation of rotavirus in sunlit surface waters.


Subject(s)
Humic Substances , Light , Rotavirus/drug effects , Rotavirus/radiation effects , Animals , Humans , Swine , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
12.
Biodegradation ; 23(3): 415-29, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22083105

ABSTRACT

The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.


Subject(s)
Acids/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Bioreactors/microbiology , Sewage/microbiology , Sulfates/metabolism , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , Coal/analysis , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Sewage/analysis
13.
An Acad Bras Cienc ; 79(1): 1-11, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17401468

ABSTRACT

In Kupka et al. 2006 appears the Focal Stability Conjecture: the focal decomposition of the generic Riemann structure on a manifold M is stable under perturbations of the Riemann structure. In this paper, we prove the conjecture when M has dimension two, and there are no conjugate points.

SELECTION OF CITATIONS
SEARCH DETAIL
...