Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 181: 453-468, 2024 06.
Article in English | MEDLINE | ID: mdl-38723927

ABSTRACT

Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.


Subject(s)
Copper , Glass , Microspheres , Copper/chemistry , Copper/pharmacology , Glass/chemistry , Biocompatible Materials/chemistry , Body Fluids/chemistry , Desiccation
2.
IEEE Trans Nanobioscience ; 15(5): 412-417, 2016 07.
Article in English | MEDLINE | ID: mdl-27071186

ABSTRACT

The Discosoma recombinant red fluorescent (DsRed) protein is the latest member of the family of fluorescent proteins. It holds great promise for applications in biotechnology and cell biology. However, before being used for rational engineering, knowledge on the behavior of DsRed and the underlying mechanisms relating its structural stability and adsorption properties on solid surfaces is highly demanded. The physico-chemical analysis performed in this study reveals that the interaction of DsRed with SiO2 surfaces does not lead to complete protein denaturation after adsorption and dehydration. Nevertheless, the photoluminescence emission of dehydrated DsRed small droplets was found to be slightly red-shifted, peaking at 590 nm. The measured contact angles of droplets containing different concentration of DsRed proteins determine the interaction as hydrophilic one, however with larger contact angles for larger DsRed concentrations. The DsRed protein behavior is not pH-dependent with respect of the contact angle measurements, in agreement with previously reported studies.


Subject(s)
Luminescent Proteins/chemistry , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration , Materials Testing , Spectroscopy, Fourier Transform Infrared , Water , Red Fluorescent Protein
3.
Sci Total Environ ; 565: 863-871, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-26953143

ABSTRACT

Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49µM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs.


Subject(s)
Anti-Bacterial Agents/toxicity , Chlamydomonas reinhardtii/drug effects , Environmental Monitoring/methods , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Silicon Dioxide/chemistry
4.
Nanoscale ; 7(48): 20778, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26606588

ABSTRACT

Correction for 'Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference' by Giuseppe Cacciato et al., Nanoscale, 2015, 7, 13468-13476.

5.
Nanoscale ; 7(32): 13468-76, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26198669

ABSTRACT

Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...