Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2304331, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509761

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, "classically activated" M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through "smart" nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.

2.
ACS Appl Mater Interfaces ; 15(50): 58260-58273, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38051559

ABSTRACT

Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Microglia , Proteomics , Glioblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Brain Neoplasms/pathology , Cell Membrane/pathology , Tumor Microenvironment/physiology , Cell Line, Tumor
3.
ACS Appl Mater Interfaces ; 13(34): 40200-40213, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410709

ABSTRACT

For their remarkable biomimetic properties implying strong modulation of the intracellular and extracellular redox state, cerium oxide nanoparticles (also termed "nanoceria") were hypothesized to exert a protective role against oxidative stress associated with the harsh environmental conditions of spaceflight, characterized by microgravity and highly energetic radiations. Nanoparticles were supplied to proliferating C2C12 mouse skeletal muscle cells under different gravity and radiation levels. Biological responses were thus investigated at a transcriptional level by RNA next-generation sequencing. Lists of differentially expressed genes (DEGs) were generated and intersected by taking into consideration relevant comparisons, which led to the observation of prevailing effects of the space environment over those induced by nanoceria. In space, upregulation of transcription was slightly preponderant over downregulation, implying involvement of intracellular compartments, with the majority of DEGs consistently over- or under-expressed whenever present. Cosmic radiations regulated a higher number of DEGs than microgravity and seemed to promote increased cellular catabolism. By taking into consideration space physical stressors alone, microgravity and cosmic radiations appeared to have opposite effects at transcriptional levels despite partial sharing of molecular pathways. Interestingly, gene ontology denoted some enrichment in terms related to vision, when only effects of radiations were assessed. The transcriptional regulation of mitochondrial uncoupling protein 2 in space-relevant samples suggests perturbation of the intracellular redox homeostasis, and leaves open opportunities for antioxidant treatment for oxidative stress reduction in harsh environments.


Subject(s)
Antioxidants/pharmacology , Cerium/pharmacology , Metal Nanoparticles/chemistry , Muscle Fibers, Skeletal/drug effects , Animals , Antioxidants/chemistry , Cell Line , Cerium/chemistry , Cosmic Radiation , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Ontology , Gravitation , Mice , Muscle Fibers, Skeletal/radiation effects , Transcriptome/drug effects , Transcriptome/radiation effects , Uncoupling Protein 2/metabolism
4.
ChemSusChem ; 13(6): 1593-1602, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31647201

ABSTRACT

Lithium-sulfur batteries are the most promising candidates for next-generation energy storage devices owing to their high theoretical specific capacity of 1675 mAh g-1 and high theoretical energy density of approximately 3500 Wh kg-1 . However, the lack of cathode active materials with appropriate electrical conductivities and stability coupled with an inexpensive and industrially compatible production process has so far hindered the development of practical devices. Here, a facile preparation pathway is reported for the production of a sulfur-carbon composite active material by drying a mixture of highly conductive few-layer graphene (FLG) flakes (produced by exploiting an innovative wet jet milling process with a yield of ≈100 % and production capability of ≈23.5 g h-1 ) with elemental sulfur, using ethanol as an environmentally friendly solvent. The designed sulfur-FLG composite shows excellent electrochemical results. The assembled lithium-sulfur battery exhibits a stable rate capability up to a current rate of 2C, a coulombic efficiency approaching 100 % for 300 cycles at the current rate of C/4 (420 mA g-1 ), and a long cycle life up to 500 cycles delivering around 600 mAh g-1 at 2C (3350 mA g-1 ).

5.
Nanoscale ; 11(48): 23482-23497, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31808496

ABSTRACT

Platinum-based drugs are popular in clinics as chemotherapeutic agents to treat solid tumors. However, severe side effects such as nephro- and neurotoxicity impose strict dosage limitations that can lead to the development of drug resistance and tumor relapse. To overcome these issues Pt(iv) prodrugs and platinum delivery systems might represent the next generation of platinum-based drugs. In this study four novel Pt(ii) complexes (namely, PEG-Glu-Pt-EDA, PEG-Glu-Pt-DACH, PEG-Mal-Pt-EDA and PEG-Mal-Pt-DACH) were synthesized and a general strategy to covalently bind them to iron oxide nanoparticles was developed. The intracellular uptake and cell distribution studies of Pt-tethered magnetic nanoparticles on breast and ovarian cancer cell line models indicate that binding of the Pt complexes to the nanoparticles facilitates, for all the complexes, cellular internalization. Moreover, the magnetic nanoparticles (MNPs), as shown in a magnetofection experiment, enhance the uptake of MNP-Pt conjugates if a magnet is placed beneath the culture dish of tumor cells. As shown by a Pt release experiment, intranuclear platinum quantification and TEM analysis on cell sections, the presence of a pH-sensitive dicarboxylic group coordinating the Pt complex, triggers platinum dissociation from the NP surface. In addition, the triazole moiety facilitates endosomal swelling and the leakage of platinum from the endosomes with intranuclear localization of platinum release by the NPs. Finally, as assessed by MTT, caspase, calcein/ethidium bromide live/dead assays, among the four NP-Pt conjugates, the NP-Glu-Pt-EDA complex having a glutamate ring and ethylenediamine as a chelating amine group of the platinum showed higher cytotoxicity than the other three MNP-platinum conjugates.


Subject(s)
Antineoplastic Agents/metabolism , Drug Delivery Systems , Magnetite Nanoparticles/chemistry , Platinum/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cytoplasm/metabolism , Drug Liberation , Humans , Platinum/metabolism , Platinum/pharmacology , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacology
6.
ACS Chem Neurosci ; 10(1): 618-627, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30339349

ABSTRACT

The interplay between nanoparticles (NPs) and cell membranes is extremely important with regard to using NPs in biology applications. With the aim of unraveling the dominating factors on the molecular scale, we have studied the interaction between polymer-coated semiconductor nanorods (NRs) made of cadmium selenium/cadmium sulfur and model lipid membranes. The zeta potential (ζ) of the NRs was tuned from having a negative value (-24 mV) to having a positive one (+11 mV) by changing the amine content in the polymer coating. Supported lipid bilayers (SLBs) and lipid monolayers (LMs) were used as model membranes. Lipid mixtures containing anionic or cationic lipids were employed in order to change the membrane ζ from -77 to +49 mV; lipids with saturated hydrophobic chains were used to create phase-separated gel domains. NR adsorption to the SLBs was monitored by quartz crystal microbalance with dissipation monitoring; interactions with LMs with the same lipid composition were measured by surface pressure-area isotherms. The results showed that the NRs only interact with the model membrane if the mutual Δζ is higher than 70 mV; at the air-water interface, positively charged NRs remove lipids from the anionic lipid mixtures, and the negative ones penetrate the space between the polar heads in the cationic mixtures. However, the presence of gel domains in the membrane inhibits this interaction. The results of the Derjaguin-Landau-Verwey-Overbeek model frame indicate that the interaction occurs not only due to electrostatic and van der Waals forces, but also due to steric and/or hydration forces.


Subject(s)
Cell Membrane/metabolism , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Polymers/chemistry , Adsorption/physiology , Lipid Bilayers/metabolism , Membrane Lipids/chemistry , Nanoparticles/chemistry , Nanotubes , Neurons/metabolism , Polymers/metabolism , Semiconductors , Static Electricity
7.
ACS Appl Mater Interfaces ; 10(24): 20271-20280, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29745638

ABSTRACT

In the field of nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this study, a one-pot synthesis of magnetic nanoparticles is presented, with an increased control on particle size from 10 to 40 nm. Monitoring of vacuum level is introduced here as a crucial parameter for achieving a fine particle morphology. The magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by high-resolution X-ray photoelectron spectroscopy analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred into water by a nonderivatized dextran coating. Thermogravimetric analysis confirms that polysaccharide molecules replace oleic acid on the surface by stabilizing the particles in the aqueous phase and culture media. Preliminary in vitro test reveals that the dextran-coated nanoparticles are not passively internalized from the cells. As a proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing cellular internalization.

8.
Angew Chem Int Ed Engl ; 55(3): 1200-3, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26638874

ABSTRACT

A versatile method to fabricate self-supported aerogels of nanoparticle (NP) building blocks is presented. This approach is based on freezing colloidal NPs and subsequent freeze drying. This means that the colloidal NPs are directly transferred into dry aerogel-like monolithic superstructures without previous lyogelation as would be the case for conventional aerogel and cryogel fabrication methods. The assembly process, based on a physical concept, is highly versatile: cryogelation is applicable for noble metal, metal oxide, and semiconductor NPs, and no impact of the surface chemistry or NP shape on the resulting morphology is observed. Under optimized conditions the shape and volume of the liquid equal those of the resulting aerogels. Also, we show that thin and homogeneous films of the material can be obtained. Furthermore, the physical properties of the aerogels are discussed.

9.
ACS Nano ; 9(8): 7925-39, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26168364

ABSTRACT

Safe implementation of nanotechnology and nanomedicine requires an in-depth understanding of the life cycle of nanoparticles in the body. Here, we investigate the long-term fate of gold/iron oxide heterostructures after intravenous injection in mice. We show these heterostructures degrade in vivo and that the magnetic and optical properties change during the degradation process. These particles eventually eliminate from the body. The comparison of two different coating shells for heterostructures, amphiphilic polymer or polyethylene glycol, reveals the long lasting impact of initial surface properties on the nanocrystal degradability and on the kinetics of elimination of magnetic iron and gold from liver and spleen. Modulation of nanoparticles reactivity to the biological environment by the choice of materials and surface functionalization may provide new directions in the design of multifunctional nanomedicines with predictable fate.


Subject(s)
Aging/physiology , Coated Materials, Biocompatible/pharmacokinetics , Drug Carriers/pharmacokinetics , Ferric Compounds/pharmacokinetics , Gold/pharmacokinetics , Magnetite Nanoparticles/analysis , Alkenes/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Drug Carriers/chemistry , Ferric Compounds/chemistry , Gold/chemistry , Injections, Intravenous , Liver/metabolism , Liver/ultrastructure , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Maleic Anhydrides/chemistry , Mice , Mice, Inbred C57BL , Nanomedicine/instrumentation , Nanomedicine/methods , Polyethylene Glycols/chemistry , Polymers/chemistry , Spleen/metabolism , Spleen/ultrastructure , Static Electricity , Surface Properties
10.
ACS Nano ; 9(2): 1788-800, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25603353

ABSTRACT

Recently, plasmonic copper sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention as materials for photothermal therapy (PTT). Previous reports have correlated photoinduced cell death to the photothermal heat mechanism of these NCs, and no evidence of their photodynamic properties has been reported yet. Herein we have prepared physiologically stable near-infrared (NIR) plasmonic copper sulfide NCs and analyzed their photothermal and photodynamic properties, including therapeutic potential in cultured melanoma cells and a murine melanoma model. Interestingly, we observe that, besides a high PTT efficacy, these copper sulfide NCs additionally possess intrinsic NIR induced photodynamic activity, whereupon they generate high levels of reactive oxygen species. Furthermore, in vitro and in vivo acute toxic responses of copper sulfide NCs were also elicited. This study highlights a mechanism of NIR light induced cancer therapy, which could pave the way toward more effective nanotherapeutics.


Subject(s)
Copper/chemistry , Copper/pharmacology , Infrared Rays , Nanoparticles , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Sulfides/chemistry , Sulfides/pharmacology , Animals , Cell Survival/drug effects , Cell Survival/radiation effects , Lasers , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism
11.
J Mater Chem B ; 2(28): 4426-4434, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-32261543

ABSTRACT

We report a highly reproducible route to synthesize iron oxide nanoparticles (IONPs) with control over size and shape and with size dispersions around 10%. By tuning the relative ratio of squalane to dibenzyl ether, which were used as solvents in the synthesis, the size of the particles could be varied from 14 to around 100 nm, while their shape evolved from cubic (for size ranges up to 35 nm) to truncated octahedra and octahedra (for sizes from 40 nm up to 100 nm). Fine tuning of the size within each of these ranges could be achieved by varying the heating ramp and the iron precursor to decanoic acid ratio. We also demonstrate direct water transfer of the as-synthesized IONPs via in situ ligand exchange with gallol polyethylene glycol molecules, the latter simply added to the crude nanocrystal mixture at 70 °C. The specific absorption rate (SAR) values measured on the water transferred IONPs, at frequencies and applied magnetic fields that are considered safe for patients, confirmed their high heating performance. Finally, this method allows the transfer of 35 nm nanocubes as individually coated and stable particles to the water phase. For the first time, the heating performance of such large IONPs has been studied. This work uncovers the possibility of using large IONPs for magnetic hyperthermia in tumor therapy.

12.
Nanoscale ; 5(23): 11374-84, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-23827988

ABSTRACT

There is a great deal of interest in the development of nanoplatforms gathering versatility and multifunctionality. The strategy reported herein meets these requirements and further integrates a cell-friendly shell in a bio-inspired approach. By taking advantage of a cell mechanism of biomolecule transport using vesicles, we engineered a hybrid biogenic nanoplatform able to encapsulate a set of nanoparticles regardless of their chemistry or shape. As a proof of versatility, different types of hybrid nanovesicles were produced: magnetic, magnetic-metallic and magnetic-fluorescent vesicles, either a single component or multiple components, combining the advantageous properties of each integrant nanoparticle. These nanoparticle-loaded vesicles can be manipulated, monitored by MRI and/or fluorescence imaging methods, while acting as efficient nano-heaters. The resulting assets for targeting, imaging and therapy converge for the outline of a new generation of nanosystems merging versatility and multifunctionality into a bio-camouflaged and bio-inspired approach.


Subject(s)
Nanostructures/chemistry , Unilamellar Liposomes/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Contrast Media/chemistry , Contrast Media/metabolism , Ferric Compounds/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Magnetic Resonance Imaging , Magnetics , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Particle Size , Temperature , Unilamellar Liposomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...