Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(19): 7084-7091, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35512178

ABSTRACT

Small-particle analysis is a highly promising emerging forensic tool for analysis of interdicted special nuclear materials. Integration of microstructural, morphological, compositional, and molecular impurity signatures could provide significant advancements in forensic capabilities. We have applied rapid, high-sensitivity, hard X-ray synchrotron chemical imaging to analyze impurity signatures in two differently fabricated fuel pellets from the 5th Collaborative Materials Exercise (CMX5) of the IAEA Nuclear Forensics International Working Group. The spatial distributions, chemical compositions, and morphological and molecular characteristics of impurities were evaluated using X-ray absorption near-edge structure (XANES) and X-ray fluorescence chemical imaging to discover principal impurities, their granularity, particle sizes, modes of occurrence (distinct grains vs incorporation in the UO2 lattice), and sources and mechanisms of incorporation. Differences in UO2+x stoichiometry were detected at the microscale in nominally identical UO2 ceramics (CMX5-A and CMX5-B), implying the presence of multiple UO2 host phases with characteristic microstructures and feedstock compositions. Al, Fe, Ni, W, and Zr impurities and integrated impurity signature analysis identified distinctly different pellet synthesis and processing methods. For example, two different Al, W, and Zr populations in the CMX5-B sample indicated a more complex processing history than the CMX5-A sample. K-edge XANES measurements reveal both metallic and oxide forms of Fe and Ni but with different proportions between each sample. Altogether, these observations suggest multiple sources of impurities, including fabrication (e.g., force-sieving) and feedstock (mineral oxides). This study demonstrates the potential of synchrotron techniques to integrate different signatures across length scales (angstrom to micrometer) to detect and differentiate between contrasting UO2 fuel fabrication techniques.

2.
Dalton Trans ; 49(30): 10452-10462, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32678407

ABSTRACT

Changes in chemical speciation of uranium oxides following storage under varied conditions of temperature and relative humidity are valuable for characterizing material provenance. In this study, subsamples of high purity α-UO3 were stored under four sets of controlled conditions of temperature and relative humidity over several years, and then measured periodically for chemical speciation. Powder X-ray diffraction (XRD) analysis and extended X-ray absorption fine structure spectroscopy confirm hydration of α-UO3 to a schoepite-like end product following storage under each of the varied storage conditions, but the species formed during exposure to the lower relative humidity and lower temperature condition follows different trends from those formed under the other three storage conditions (high relative humidity with high or low temperatures, and low relative humidity with a high temperature). Thermogravimetry coupled with XRD analysis was carried out to distinguish desorption pathways of water from the hydrated end products. Density functional theory calculations discern changes in the structure of α-UO3 following incorporation of 1, 2 or 3 H2O molecules or 1, 2 or 3 OH groups into the orthorhombic lattice, revealing differences in lattice constants, U-O bond lengths, and U-U distances. The collective results from this analysis are in contrast to analogous studies that report that U3O8 is oxidized and hydrated in air during storage under high relative humidity conditions.

3.
Inorg Chem ; 54(9): 4192-9, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25901900

ABSTRACT

A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW9O34](9-), [AsW9O34](9-), [SiW9O34](10-), and [GeW9O34](10-)) are multidentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO2}(2+), {NpO2}(+), {NpO2}(2+), and {PuO2}(2+)) in near-neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two tri-lacunary anions, with additional cations (Na(+), K(+), or NH4(+)) also often held within the cluster. Studies thus far have indicated that it is these additional +1 cations, rather than the specific actinyl cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl(VI) cluster complex (NH4)13[Na(NpO2)2(A-α-PW9O34)2]·12H2O. The anion in this complex, [Na(NpO2)2(PW9O34)2](13-), contains one Na(+) cation and two {NpO2}(2+) cations held between two [PW9O34](9-) anions, with an additional partial occupancy NH4(+) or {NpO2}(2+) cation also present. In the analogous uranium(VI) system, under similar reaction conditions that include an excess of NH4Cl in the parent solution, it was previously shown that [(NH4)2(U(VI)O2)2(A-PW9O34)2](12-) is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO2}(2+)/[PW9O34](9-) and {UO2}(2+)/[PW9O34](9-) systems, both in solution and in solid state complexes crystallized from comparable salt solutions. This work reveals that varying the actinide element (Np vs U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl(VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.

4.
Anal Chem ; 87(8): 4210-7, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25786096

ABSTRACT

Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In this study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2-3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. Signatures measured from the α-U3O8 sample indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. The absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.

SELECTION OF CITATIONS
SEARCH DETAIL
...