Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters










Publication year range
1.
Med Biol Eng Comput ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008187

ABSTRACT

The mechanics of the trabecular bone is related to its structure; this work aimed to propose a simple projection method to clarify the correlation between the principal mechanical direction (PMD) and the principal microstructural direction (PMSD) of trabecular bones from osteoporotic femoral heads. A total of 529 trabecular cubes were cropped from five osteoporotic femoral heads. The micro computed tomography (µCT) sequential images of each cube were first projected onto the three Cartesian coordinate planes to have three overlapped images, and the trabecular orientation distribution in the three images was analyzed. The PMSD corresponding to the greatest distribution frequency of the trabecular orientation in the three images was defined. Then, the voxel finite element (FE) models of the cubes were reconstructed and simulated to obtain their compliance matrices, and the matrices were subjected to transversal rotation to find their maximum elastic constants. The PMD corresponding to the maximum elastic constant was defined. Subsequently, the correlation of the defined PMSD and PMD was analyzed. The results showed that PMSD and PMD of the trabecular cubes did not show a significant difference at the xy- and yz-planes except that at the zx-plane. Despite this, the mean PMSD-PMD deviations at the three coordinate planes were close to 0°, and the PMSD-PMD fitting to the line PMSD = PMD demonstrated their high correlation. This study might be helpful to identify the loading direction of anisotropic trabecular bones in experiments by examining the PMSD and also to guide bone scaffold design for bone tissue repair.

2.
Nat Commun ; 15(1): 5863, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997272

ABSTRACT

Fail-safe design of devices requires robust integrity assessment procedures which are still absent for 2D materials, hence affecting transfer to applications. Here, a combined on-chip tension and cracking method, and associated data reduction scheme have been developed to determine the fracture toughness and strength of monolayer-monodomain-freestanding graphene. Myriads of specimens are generated providing statistical data. The crack arrest tests provide a definitive fracture toughness of 4.4 MPa m . Tension on-chip provides Young's modulus of 950 GPa, fracture strain of 11%, and tensile strength up to 110 GPa, reaching a record of stored elastic energy ~6 GJ m-3 as confirmed by thermodynamics and quantized fracture mechanics. A ~ 1.4 nm crack size is often found responsible for graphene failure, connected to 5-7 pair defects. Micron-sized graphene membranes and smaller can be produced defect-free, and design rules can be based on 110 GPa strength. For larger areas, a fail-safe design should be based on a maximum 57 GPa strength.

3.
J Funct Biomater ; 15(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786646

ABSTRACT

Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.

4.
J R Soc Interface ; 20(205): 20230330, 2023 08.
Article in English | MEDLINE | ID: mdl-37553994

ABSTRACT

The current study investigates the body-environment interaction and exploits the passive viscoelastic properties of the body to perform undulatory locomotion. The investigations are carried out using a mathematical model based on a dry frictional environment, and the results are compared with the performance obtained using a physical model. The physical robot is a wheel-based modular system with flexible joints moving on different substrates. The influence of the spatial distribution of body stiffness on speed performance is also investigated. Our results suggest that the environment affects the performance of undulatory locomotion based on the distribution of body stiffness. While stiffness may vary with the environment, we have established a qualitative constitutive law that holds across environments. Specifically, we expect the stiffness distribution to exhibit either an ascending-descending or an ascending-plateau pattern along the length of the object, from head to tail. Furthermore, undulatory locomotion showed sensitivity to contact mechanics: solid-solid or solid-viscoelastic contact produced different locomotion kinematics. Our results elucidate how terrestrial limbless animals achieve undulatory locomotion performance by exploiting the passive properties of the environment and the body. Application of the results obtained may lead to better performing long-segmented robots that exploit the suitability of passive body dynamics and the properties of the environment in which they need to move.


Subject(s)
Locomotion , Models, Theoretical , Animals , Biomechanical Phenomena
5.
Adv Mater ; 35(41): e2302816, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37369361

ABSTRACT

Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.

6.
Adv Sci (Weinh) ; 10(9): e2205146, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36725304

ABSTRACT

Geraniaceae seeds represent a role model in soft robotics thanks to their ability to move autonomously across and into the soil driven by humidity changes. The secret behind their mobility and adaptivity is embodied in the hierarchical structures and anatomical features of the biological hygroscopic tissues, geometrically designed to be selectively responsive to environmental humidity. Following a bioinspired approach, the internal structure and biomechanics of Pelargonium appendiculatum (L.f.) Willd seeds are investigated to develop a model for the design of a soft robot. The authors exploit the re-shaping ability of 4D printed materials to fabricate a seed-like soft robot, according to the natural specifications and model, and using biodegradable and hygroscopic polymers. The robot mimics the movement and performances of the natural seed, reaching a torque value of ≈30 µN m, an extensional force of ≈2.5 mN and it is capable to lift ≈100 times its own weight. Driven by environmental humidity changes, the artificial seed is able to explore a sample soil, adapting its morphology to interact with soil roughness and cracks.

7.
J R Soc Interface ; 20(199): 20220875, 2023 02.
Article in English | MEDLINE | ID: mdl-36751930

ABSTRACT

One of the oldest yet most common modalities of locomotion known among limbless animals is undulatory, also recognized for its stability compared to legged locomotion. Multiple forms of active mechanisms, e.g. active gait control, and passive mechanisms, e.g. body morphology and material properties, have adapted to different environments. The current research explores the passive role of body stiffness and internal losses in meeting terrain requirements. Furthermore, it addresses the influence of the environment on the resultant gait and how the interplay between various environments and body properties can lead to different speeds. We modelled undulatory locomotion in a dry friction environment where frictional anisotropy determines propulsion. We found that the body stiffness, the moment of inertia, the dry frictional coefficient ratio between normal and tangential frictional constants, and the internal damping of the body play an essential role in optimizing speed and animal adaptability to external conditions. Furthermore, we demonstrate that various known gaits like swimming, crawling and polychaete-like locomotion are achieved as a result of the interaction between body and environment parameters. Moreover, we validated the model by retrieving a corn snake's speed using data from the literature. This study demonstrates that the dependence between morphology, body material properties and environment can be exploited to design long-segmented robots to perform in specialized situations.


Subject(s)
Locomotion , Swimming , Animals , Friction , Anisotropy , Biomechanical Phenomena , Gait
8.
Biophys Rev (Melville) ; 4(3): 031301, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38510706

ABSTRACT

Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.

9.
Adv Funct Mater ; 32(23): 2200986, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-36505976

ABSTRACT

Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in ß-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high ß-strand propensity and can mediate tight inter-ß-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger ß-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.

11.
Sci Rep ; 12(1): 19045, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351940

ABSTRACT

Spider webs are finely tuned multifunctional structures, widely studied for their prey capture functionalities such as impact strength and stickiness. However, they are also sophisticated sensing tools that enable the spider to precisely determine the location of impact and capture the prey before it escapes. In this paper, we suggest a new mechanism for this detection process, based on potential modal analysis capabilities of the spider, using its legs as distinct distributed point sensors. To do this, we consider a numerical model of the web structure, including asymmetry in the design, prestress, and geometrical nonlinearity effects. We show how vibration signals deriving from impacts can be decomposed into web eigenmode components, through which the spider can efficiently trace the source location. Based on this numerical analysis, we discuss the role of the web structure, asymmetry, and prestress in the imaging mechanism, confirming the role of the latter in tuning the web response to achieve an efficient prey detection instrument. The results can be relevant for efficient distributed impact sensing applications.


Subject(s)
Silk , Spiders , Animals , Silk/chemistry , Vibration , Predatory Behavior/physiology , Spiders/physiology
12.
Sci Adv ; 8(41): eabo6043, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36223455

ABSTRACT

Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.

13.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20210389, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36209809

ABSTRACT

The design of structures that can yield efficient sound insulation performance is a recurring topic in the acoustic engineering field. Special attention is given to panels, which can be designed using several approaches to achieve considerable sound attenuation. Previously, we have presented the concept of thickness-varying periodic plates with optimized profiles to inhibit flexural wave energy propagation. In this work, motivated by biological structures that present multiple locally resonant elements able to cause acoustic cloaking, we extend our shape optimization approach to design panels that achieve improved acoustic insulation performance using either thickness-varying profiles or locally resonant attachments. The optimization is performed using numerical models that combine the Kirchhoff plate theory and the plane wave expansion method. Our results indicate that panels based on locally resonant mechanisms have the advantage of being robust against variation in the incidence angle of acoustic excitation and, therefore, are preferred for single-leaf applications. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.


Subject(s)
Acoustics , Models, Theoretical , Sound
14.
J R Soc Interface ; 19(195): 20220311, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36285437

ABSTRACT

In applied biotremology, vibrational signals or cues are exploited to manipulate the target species behaviour. To develop an efficient pest control strategy, other than a detailed investigation into the pest biology and behaviour, the role of the substrate used to transmit the signal is an important feature to be considered, since it may affect vibrations spreading and effective signal transmission and perception. Therefore, we used a multi-disciplinary approach to develop a control technique against the greenhouse whitefly, Trialeurodes vaporariorum. First, an ad hoc vibrational disruptive noise has been developed, based on the acquired knowledge about the mating behaviour and vibrational communication of the mated species. Subsequently, we employed finite-element models to investigate a growing tomato plant response to the aforesaid noise. Modelling how vibrations spread along the plant allowed us to set up a greenhouse experiment to assess the efficacy in terms of insect population of the vibrational treatment, which was administrated through vibrational plates. The green methodology applied in this study represents an innovative, environmentally sound alternative to the usage of synthetic pesticides.


Subject(s)
Hemiptera , Pesticides , Animals , Vibration , Pest Control , Insecta
15.
Nanoscale ; 14(39): 14558-14574, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36149382

ABSTRACT

We report about a biomaterial in the form of film ∼10 µm thick, consisting of a silk fibroin matrix with embedded iron oxide superparamagnetic nanoparticles, for prospective applications as bioactive coating in regenerative medicine. Films with different load of magnetic nanoparticles are produced (nanoparticles/silk fibroin nominal ratio = 5, 0.5 and 0 wt%) and the structural, mechanical and magnetic properties are studied. The nanoparticles form aggregates in the silk fibroin matrix and the film stiffness, as tested by nanoindentation, is spatially inhomogeneous, but the protein structure is not altered. In vitro biological tests are carried out on human bone marrow-derived mesenchymal stem cells cultured on the films up to 21 days, with and without an applied static uniform magnetic field. The sample with the highest nanoparticles/silk fibroin ratio shows the best performance in terms of cell proliferation and adhesion. Moreover, it promotes a faster and better osteogenic differentiation, particularly under magnetic field, as indicated by the gene expression level of typical osteogenic markers. These findings are explained in light of the results of the physical characterization, combined with numerical calculations. It is established that the applied magnetic field triggers a virtuous magneto-mechanical mechanism in which dipolar magnetic forces between the nanoparticle aggregates give rise to a spatial distribution of mechanical stresses in the silk fibroin matrix. The film with the largest nanoparticle load, under cell culture conditions (i.e. in aqueous environment), undergoes matrix deformations large enough to be sensed by the seeded cells as mechanical stimuli favoring the osteogenic differentiation.


Subject(s)
Fibroins , Magnetite Nanoparticles , Mesenchymal Stem Cells , Biocompatible Materials/chemistry , Cell Differentiation , Cell Proliferation , Fibroins/chemistry , Humans , Osteogenesis , Silk/chemistry , Tissue Scaffolds/chemistry
16.
Sci Rep ; 12(1): 13056, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906448

ABSTRACT

The exoskeleton of spiders is the primary structure that interacts with the external mechanical stimuli, thus playing a crucial role in spider life. In particular, fangs, legs, and prosoma are the main rigid structures of the exoskeleton and their properties must be measured to better understand their mechanical behaviours. Here we investigate, by means of nanoindentation, the mechanical properties of the external sclerotized cuticles of such parts in the spider Harpactira curvipes. Interestingly, the results show that the leg's cuticle is stiffer than the prosoma and has a stiffness similar to the one of the tip fangs. This could be explained by the legs' function in perceiving vibrations that could be facilitated by higher stiffness. From a broader perspective, this characterization could help to understand how the same basic material (the cuticle, i.e. mainly composed of chitin) can be tuned to achieve different mechanical functions, which improves the animal's adaptation to specific evolutive requirements. We, thus, hope that this work stimulates further comparative analysis. Moreover, these results may also be potentially important to inspire the design of graded materials with superior mechanical properties.


Subject(s)
Spiders , Animals , Chitin/chemistry , Vibration
17.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745401

ABSTRACT

Three-dimensional printing offers a promising, challenging opportunity to manufacture component parts with ad hoc designed composite materials. In this study, the novelty of the research is the production of multiscale composites by means of a solvent-free process based on melt compounding of acrylonitrile-butadiene-styrene (ABS), with various amounts of microfillers, i.e., milled (M) carbon fibers (CFs) and nanofillers, i.e., carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs). The compounded materials were processed into compression molded sheets and into extruded filaments. The latter were then used to print fused filament fabrication (FFF) specimens. The multiscale addition of the microfillers inside the ABS matrix caused a notable increase in rigidity and a slight increase in strength. However, it also brought about a significant reduction of the strain at break. Importantly, GNPs addition had a good impact on the rigidity of the materials, whereas CNTs favored/improved the composites' electrical conductivity. In particular, the addition of this nanofiller was very effective in improving the electrical conductivity compared to pure ABS and micro composites, even with the lowest CNT content. However, the filament extrusion and FFF process led to the creation of voids within the structure, causing a significant loss of mechanical properties and a slight improvement of the electrical conductivity of the printed multiscale composites. Selective parameters have been presented for the comparison and selection of compositions of multiscale nanocomposites.

18.
Arthropod Struct Dev ; 69: 101173, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636340

ABSTRACT

The increasing demand for safe and sustainably produced food is leading to the development of strategies of pest control alternative to chemicals. One innovative method is Vibrational Mating Disruption (VMD) to disrupt insect communication in plants. VMD was proven effective in preventing mating of the grapevine pest Scaphoideus titanus, vector of flavescence dorée. However, the stress induced by VMD on the target species has the potential to influence other crucial aspects of the insect biology and ethology. Therefore, the goal of this study was to understand side effects of VMD on the flight activity and oviposition of S. titanus. The results of our experiments conducted in the greenhouse showed that in the presence of a receptive female, males fly more if exposed to vibrations than in the silent control but not differently from singles males in silence. Surprisingly, we found that also females subjected to VMD fly more than in the silence. Regarding oviposition, we found that mated females exposed to vibrations and single females (unmated) laid significantly fewer eggs than mated females in silence. In conclusion, this study shows the potential of VMD to interfere, besides with mating, with other important biological aspects of the pest species.


Subject(s)
Flight, Animal , Hemiptera , Insect Control , Oviposition , Vibration , Animals , Female , Insect Control/methods , Insect Control/standards , Male
19.
Surg Endosc ; 36(12): 8797-8806, 2022 12.
Article in English | MEDLINE | ID: mdl-35578046

ABSTRACT

BACKGROUND: Recently, in the field of abdominal wall repair surgery, some minimally invasive procedures introduced the use of staplers to provide a retromuscular prosthetic repair. However, to the knowledge of the authors, there are little data in the literature about the outcomes of stapled sutures adoption for midline reconstruction. This study aims to investigate the biomechanics of stapled sutures, simple (stapled), or oversewn (hybrid), in comparison with handsewn suture. From the results obtained, we tried to draw indications for their use in a clinical context. METHODS: Human cadaver fascia lata specimens, sutured (handsewn, stapled, or hybrid) or not, underwent tensile tests. The data on strength (maximal stress), ultimate strain (deformability), Young's modulus (rigidity), and dissipated specific energy (ability to absorb mechanical energy up to the breaking point) were recorded for each type of specimens and analyzed. RESULTS: Stapled and hybrid suture showed a significantly higher strength (handsewn 0.83 MPa, stapled 2.10 MPa, hybrid 2.68 MPa) and a trend toward a lower ultimate strain as compared to manual sutures (handsewn 344%, stapled 249%, hybrid 280%). Stapled and hybrid sutures had fourfold higher Young's modulus as compared to handsewn sutures (handsewn 1.779 MPa, stapled 7.374 MPa, hybrid 6.964 MPa). Handsewn and hybrid sutures showed significantly higher dissipated specific energy (handsewn 0.99 mJ-mm3, stapled 0.73 mJ-mm3, hybrid 1.35 mJ-mm3). CONCLUSION: Stapled sutures can resist high loads, but are less deformable and rigid than handsewn suture. This suggests a safer employment in case of small defects or diastasis (< W1 in accord to EHS classification), where the presumed tissutal displacement is minimal. Oversewing a stapled suture improves its efficiency, becoming crucial in case of larger defects (> W1 in accord to EHS classification) where the expected tissutal displacement is maximal. Hybrid sutures seem to be a good compromise.


Subject(s)
Proctocolectomy, Restorative , Surgical Stapling , Humans , Suture Techniques , Sutures , Proctocolectomy, Restorative/methods , Anastomosis, Surgical/methods
20.
Sci Rep ; 12(1): 3507, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241705

ABSTRACT

Silk fibres attract great interest in materials science for their biological and mechanical properties. Hitherto, the mechanical properties of the silk fibres have been explored mainly by tensile tests, which provide information on their strength, Young's modulus, strain at break and toughness modulus. Several hypotheses have been based on these data, but the intrinsic and often overlooked variability of natural and artificial silk fibres makes it challenging to identify trends and correlations. In this work, we determined the mechanical properties of Bombyx mori cocoon and degummed silk, native spider silk, and artificial spider silk, and compared them with classical commercial carbon fibres using large sample sizes (from 10 to 100 fibres, in total 200 specimens per fibre type). The results confirm a substantial variability of the mechanical properties of silk fibres compared to commercial carbon fibres, as the relative standard deviation for strength and strain at break is 10-50%. Moreover, the variability does not decrease significantly when the number of tested fibres is increased, which was surprising considering the low variability frequently reported for silk fibres in the literature. Based on this, we prove that tensile testing of 10 fibres per type is representative of a silk fibre population. Finally, we show that the ideal shape of the stress-strain curve for spider silk, characterized by a pronounced exponential stiffening regime, occurs in only 25% of all tested spider silk fibres.


Subject(s)
Bombyx , Spiders , Animals , Carbon Fiber , Sample Size , Silk , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...