Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 49(13): 3757-8, 2006 Jun 29.
Article in English | MEDLINE | ID: mdl-16789730

ABSTRACT

A series of 3-imino-2-indolones are the first published, high-affinity antagonists of the galanin GAL3 receptor. One example, 1,3-dihydro-1-phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-2H-indol-2-one (9), was shown to have high affinity for the human GAL3 receptor (Ki=17 nM) and to be highly selective for GAL3 over a broad panel of targets, including GAL1 and GAL2. Compound 9 was also shown to be an antagonist in a human GAL3 receptor functional assay (Kb=29 nM).


Subject(s)
Imines/chemical synthesis , Indoles/chemical synthesis , Receptor, Galanin, Type 3/antagonists & inhibitors , Animals , Binding, Competitive , Brain/metabolism , COS Cells , Chlorocebus aethiops , Cyclic AMP/biosynthesis , Humans , Imines/pharmacokinetics , Imines/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Ligands , Radioligand Assay , Rats , Receptor, Galanin, Type 1/drug effects , Receptor, Galanin, Type 2/drug effects , Stereoisomerism , Structure-Activity Relationship
2.
J Med Chem ; 45(14): 3022-31, 2002 Jul 04.
Article in English | MEDLINE | ID: mdl-12086487

ABSTRACT

The present study describes the synthesis and in vitro pharmacology of a novel series of dopaminergic agents in which the classical phenylethylamine pharmacophore is replaced by a thienylethylamine moiety. In general, the novel compounds showed a moderate affinity for the dopamine (DA) D(2) and D(3) receptors. When the thienylethylamine moiety is fixed in a rigid system, the affinity for the DA receptor is significantly increased. However, in the tricyclic hexahydrothianaphthoxazine structure, the affinity for the DA receptors is diminished.


Subject(s)
Dopamine Agonists/chemical synthesis , Receptors, Dopamine D2/metabolism , Thiophenes/chemical synthesis , Animals , Binding, Competitive , Biological Availability , CHO Cells , Cricetinae , Dopamine Agonists/chemistry , Dopamine Agonists/pharmacology , Humans , Magnetic Resonance Spectroscopy , Microdialysis , Radioligand Assay , Rats , Receptors, Dopamine D3 , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
3.
J Med Chem ; 45(14): 3094-102, 2002 Jul 04.
Article in English | MEDLINE | ID: mdl-12086495

ABSTRACT

Previously, we reported on PD 102807 (41) as being the most selective synthetic M(4) muscarinic antagonist identified to date. Synthesized analogues of 41 showed no improvement in affinity and selectivity at that time. However, several newly synthesized compounds exhibit a 7-fold higher affinity at M(4) receptors and demonstrate a selectivity of at least 100-fold over all other muscarinic receptor subtypes. For example, compound 28 showed an affinity of pK(i) = 9.00 at M(4) receptors and a selectivity of M(1)/M(4) = 13 183-fold, M(2)/M(4) = 339-fold, M(3)/M(4) = 151-fold, and M(5)/M(4) = 11 220-fold. This high selectivity along with high affinity has not been reported for any synthetic muscarinic antagonist, nor for natural occurring M(4) antagonists such as the M(4) selective Eastern Green Mamba venom MT3 (M(4) pK(b) = 8.7, M(1)/M(4) = 40-fold, M(2)/M(4) > or = 500-fold, M(3)/M(4) > or = 500-fold, and M(5)/M(4) > or = 500-fold). Derivative 24, a compound with a high selectivity pattern as well, has been tested for in vivo efficacy. It was able to block the L-3,4-dihydroxyphenylalanine accumulation produced by CI-1017, an M(1)/M(4) selective muscarinic agonist, in the mesolimbic region and striatum, which suggests that 24 is capable of crossing the blood-brain barrier and confirms the pharmacokinetic data obtained on this compound. This is evidence that suggests that agonist-induced increase in catecholamine synthesis observed in these regions is mediated by M(4) receptors.


Subject(s)
Anthracenes/chemical synthesis , Muscarinic Antagonists/chemical synthesis , Oxazines/chemical synthesis , Receptors, Muscarinic/drug effects , Animals , Anthracenes/chemistry , Anthracenes/pharmacology , Binding, Competitive , Biological Availability , Blood-Brain Barrier , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CHO Cells , Cricetinae , Dihydroxyphenylalanine/biosynthesis , Humans , Male , Motor Activity/drug effects , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/chemistry , Muscarinic Antagonists/pharmacology , Oxazines/chemistry , Oxazines/pharmacology , Oximes/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Muscarinic M1 , Receptor, Muscarinic M4 , Structure-Activity Relationship
4.
J Med Chem ; 45(12): 2349-51, 2002 Jun 06.
Article in English | MEDLINE | ID: mdl-12036342

ABSTRACT

After decades of research around dopamine agonists, we have found a promising compound in S-PD148903 that represents a new type of prodrug, which in the rat is bioactivated to the catecholamine S-5,6-diOH-DPAT, known to display mixed dopamine D(1)/D(2) receptor agonist properties just like apomorphine. This prodrug has an enone structure which by an oxidative bioactivation mechanism is converted to the corresponding catechol and is delivered enantioselectively into the CNS. This novel concept has the potential to revolutionize the treatment of Parkinson's disease by competing with L-DOPA, the current treatment of choice.


Subject(s)
2-Naphthylamine/chemical synthesis , Antiparkinson Agents/chemical synthesis , Catecholamines/chemical synthesis , Parkinson Disease/drug therapy , Prodrugs/chemical synthesis , Tetrahydronaphthalenes/metabolism , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/metabolism , 2-Naphthylamine/pharmacology , Administration, Oral , Animals , Antiparkinson Agents/metabolism , Antiparkinson Agents/pharmacology , Catecholamines/metabolism , Catecholamines/pharmacology , Crystallography, X-Ray , Male , Microdialysis , Molecular Conformation , Parkinson Disease/physiopathology , Prodrugs/metabolism , Prodrugs/pharmacology , Rats , Rats, Wistar , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Stereoisomerism , Structure-Activity Relationship , Tetrahydronaphthalenes/administration & dosage
5.
Article in English | MEDLINE | ID: mdl-11817497

ABSTRACT

The dopamine (DA) D2 family of receptors consists of the D2, D3, and D4 receptors. The DA D4 receptor is of interest as a target for drugs to treat schizophrenia based upon its high affinity for the atypical antipsychotic clozapine and its localization to the limbic and cortical regions of the brain. As part of a program to identify novel DA D4 receptor antagonists, a high-volume screen using the Parke-Davis compound library was initiated. This led to the discovery of PD 89211 (benzenemethanol, 2-chloro-4-[4-[(1H-benzimidazol-2-yl)methyl]-1-piperzinyl]) that displaced [3H]spiperone binding to hD4.2 with an affinity (Ki) of 3.7 nM. PD 89211 exhibited high selectivity for the DA D4.2 receptor (> 800-fold) as compared to other hDA receptor subtypes, rat brain serotonin, and adrenergic receptors. In vitro, PD 89211 had D4 receptor antagonist activity reversing quinpirole-induced [3H]thymidine uptake in CHOpro5 cells (IC50 = 2.1 nM). Limited structure-activity relationship (SAR) studies indicated that compounds with a 4-chloro-, 4-methyl-, and 3-chloro- substituents on the phenyl ring retained high affinity for D4 receptors, while those with a 4-methoxy- and no substituent had less affinity. While all clinically effective antipsychotics increase DA synthesis (DOPA accumulation) in rodents, PD 89211 did not increase DA synthesis in the DA-enriched striatum, indicating no effect on DA turnover and low propensity for exhibiting motor side effects. However, it did increase catecholamine synthesis in rat hippocampus, as did clozapine. Moreover, PD 89211 selectivity increased catecholamine synthesis in the hippocampus of wild type but not in mice lacking D4 receptors, suggesting that one function of D4 receptors may be to modulate DA/norepinephrine (NE) turnover in this brain area known to possess D4 receptors. The discovery of compounds like PD 89211 provides a tool to help in understanding the function of DA D4 receptors in the CNS.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzyl Alcohol/pharmacology , Dopamine Antagonists/chemistry , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists , Piperazines/chemistry , Piperazines/pharmacology , Animals , CHO Cells , Catecholamines/metabolism , Cricetinae , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Long-Evans , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D4
SELECTION OF CITATIONS
SEARCH DETAIL
...