Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 32(6): 1138-47, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22349101

ABSTRACT

A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics.


Subject(s)
Biomass , Minerals , Waste Management/instrumentation , Biological Products , Equipment Design , Gases , Pilot Projects , Waste Management/methods
2.
AAPS PharmSciTech ; 6(2): E198-201, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16353978

ABSTRACT

Pressure fluctuation measurements collected during the fluidized bed granulation of pharmaceutical granule have been analyzed using the attractor comparison technique denoted as the S-statistic. Divergence of the bed state from the reference during granulation is followed by a return to a condition statistically similar to the original state of the dry fluidized ingredients on drying. This suggests insensitivity of the S-statistic technique to the changes in particle size distribution occurring during the granulation process. Consequently, the monitoring of pressure fluctuations alone may provide an easily implemented technique for the tracking of granule moisture and process end-point determination.


Subject(s)
Pharmaceutical Preparations/chemical synthesis , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/statistics & numerical data , Pressure , Time Factors
3.
Appl Microbiol Biotechnol ; 68(3): 397-404, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15660217

ABSTRACT

A study was conducted on the drying of Penicillium bilaiae, a fungal micro-organism used to promote soil-bound phosphorous uptake in several crop species, such as wheat, canola and pulse crops. A wet pellet formed from a mixture of the inoculant and a starch-based carrier was air-dried to the appropriate water activity to extend the shelf-life of the viable fungal conidia. Convective air-drying was examined as a low-energy alternative to the more expensive freeze-drying technology that is currently in use. Experiments were conducted to measure the loss of conidia viability during drying in a fixed-bed, thin-layer convective dryer. The dryer air inlet temperature and relative humidity were controlled in experiments to determine the effect of thermal and dessicative stresses on conidial viability. The measured survivor fraction was determined to be dependent on solids temperature, moisture content and drying rate. Thermal stresses became significant for process temperatures above 30 degrees C, while the survivor fraction fell sharply below a dry basis moisture ratio of 30%. Slower drying kinetics associated with high inlet air relative humidity were found to significantly improve the recovery of viable conidia. By minimising environmental stresses, survivor fractions of up to 75% could be achieved, but this result fell dramatically with the introduction of more severe conditions. A general linear statistical model is used to quantify experimental error and the significance level of each factor.


Subject(s)
Desiccation , Penicillium/physiology , Air , Penicillium/growth & development , Penicillium/metabolism , Phosphorus/metabolism , Temperature , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...