Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
2.
Biomed Pharmacother ; 175: 116779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776681

ABSTRACT

Diabetic patients present increased volume and functional alterations in epicardial adipose tissue (EAT). We aimed to analyze EAT from type 2 diabetic patients and the inflammatory and cytotoxic effects induced on cardiomyocytes. Furthermore, we analyzed the cardioprotective role of apolipoprotein J (apoJ). EAT explants were obtained from nondiabetic patients (ND), diabetic patients without coronary disease (DM), and DM patients with coronary disease (DM-C) after heart surgery. Morphological characteristics and gene expression were evaluated. Explants were cultured for 24 h and the content of nonesterified fatty acids (NEFA) and sphingolipid species in secretomes was evaluated by lipidomic analysis. Afterwards, secretomes were added to AC16 human cardiomyocytes for 24 h in the presence or absence of cardioprotective molecules (apoJ and HDL). Cytokine release and apoptosis/necrosis were assessed by ELISA and flow cytometry. The EAT from the diabetic samples showed altered expression of genes related to lipid accumulation, insulin resistance, and inflammation. The secretomes from the DM samples presented an increased ratio of pro/antiatherogenic ceramide (Cer) species, while those from DM-C contained the highest concentration of saturated NEFA. DM and DM-C secretomes promoted inflammation and cytotoxicity on AC16 cardiomyocytes. Exogenous Cer16:0, Cer24:1, and palmitic acid reproduced deleterious effects in AC16 cells. These effects were attenuated by exogenous apoJ. Diabetic secretomes promoted inflammation and cytotoxicity in cardiomyocytes. This effect was exacerbated in the secretomes of the DM-C samples. The increased content of specific NEFA and ceramide species seems to play a key role in inducing such deleterious effects, which are attenuated by apoJ.


Subject(s)
Adipose Tissue , Diabetes Mellitus, Type 2 , Inflammation , Myocytes, Cardiac , Pericardium , Humans , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Pericardium/metabolism , Pericardium/pathology , Diabetes Mellitus, Type 2/metabolism , Inflammation/pathology , Inflammation/metabolism , Male , Female , Middle Aged , Aged , Apoptosis/drug effects , Lipid Metabolism/drug effects , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , Epicardial Adipose Tissue
4.
Sci Total Environ ; 912: 169114, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38065498

ABSTRACT

Public participation is crucial for policy-making and can contribute to strengthening democracies and decision-making. Public participation can help to address sustainability challenges and plays a key role in attaining the Sustainable Development Goals (SDGs). While the SDGs are policy concepts, there has been limited research conducted on how the public perceives the SDGs. Public participation in scientific research has been carried out through citizen science (CS). This paper analyzes the public's perception of the SDGs through CS and how the public can participate in their implementation. The paper uses the OSDG community platform, a citizen science platform with >2000 participants, to analyze public perception of the SDGs. A set of 40,062 excerpts of text (v2023-01-01), a topic modeling and agreement scores by using CorTexT Manager software, was analyzed. The results show that some SDGs, e.g. health (SDG3) or life below water (SDG14), have higher levels of agreement from the public, whilst for other SDGs the public disagree on their perception, (e.g. zero hunger). The paper shows that issues affecting citizens' daily lives (e.g. in People related goals) tend to have a higher level of agreement among volunteers, while economic issues and directives have greater discrepancies. The results provide an overview of the differences in public perception on the SDGs and their implementation. The misperceptions regarding the SDGs should be reduced to achieve a better implementation, improve public participation, and help policy-making processes.

5.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762627

ABSTRACT

Atherothrombotic stroke represents approximately 20% of all ischemic strokes. It is caused by large-artery atherosclerosis, mostly in the internal carotid artery, and it is associated with a high risk of early recurrence. After an ischemic stroke, tissue plasminogen activator is used in clinical practice, although it is not possible in all patients. In severe clinical situations, such as high carotid stenosis (≥70%), revascularization by carotid endarterectomy or by stent placement is carried out to avoid recurrences. In stroke prevention, the pharmacological recommendations are based on antithrombotic, lipid-lowering, and antihypertensive therapy. Inflammation is a promising target in stroke prevention, particularly in ischemic strokes associated with atherosclerosis. However, the use of anti-inflammatory strategies has been scarcely studied. No clinical trials are clearly successful and most preclinical studies are focused on protection after a stroke. The present review describes novel therapies addressed to counteract inflammation in the prevention of the first-ever or recurrent stroke. The putative clinical use of broad-spectrum and specific anti-inflammatory drugs, such as monoclonal antibodies and microRNAs (miRNAs) as regulators of atherosclerosis, will be outlined. Further studies are necessary to ascertain which patients may benefit from anti-inflammatory agents and how.


Subject(s)
Atherosclerosis , Carotid Artery Diseases , Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator , Carotid Artery Diseases/complications , Carotid Artery Diseases/drug therapy , Atherosclerosis/complications , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Stroke/drug therapy , Stroke/etiology , Stroke/prevention & control , Inflammation
6.
Environ Sci Pollut Res Int ; 30(38): 88331-88349, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37454377

ABSTRACT

Carbon footprint (CF) research has received increasing attention in recent years, as evidenced by a rise in publications and citations, reflecting a growing concern for the environmental impact of human activities. However, the alignment of this scientific literature with the three dimensions of sustainability performance provided by the TBL paradigm (people, planet, and profit) has received limited attention. This study addresses this research gap by undertaking a large-scale bibliometric analysis of 9032 Web of Science (WoS) publications from 1992 to 2020. At the macro (journals) and micro (papers) levels, a methodology approach to classify research publications according to TBL dimensions was designed. The results indicate that the output and impact of CF research are balanced with respect to the environmental (planet) and economic (prosperity/profit) dimensions, while the social impact is balanced with respect to the people+profit dimensions. Other than that, "Affordable and Clean Energy" (3761 publications) and "Climate Action" (3091 publications) are the most frequently represented (and interconnected) objectives. The results obtained contribute to a greater understanding of the contribution of CF research to the attainment of the SDGs.


Subject(s)
Bibliometrics , Carbon Footprint , Humans , Publications
7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108253

ABSTRACT

Electronegative LDL (LDL(-)) is a minor form of LDL present in blood for which proportions are increased in pathologies with increased cardiovascular risk. In vitro studies have shown that LDL(-) presents pro-atherogenic properties, including a high susceptibility to aggregation, the ability to induce inflammation and apoptosis, and increased binding to arterial proteoglycans; however, it also shows some anti-atherogenic properties, which suggest a role in controlling the atherosclerotic process. One of the distinctive features of LDL(-) is that it has enzymatic activities with the ability to degrade different lipids. For example, LDL(-) transports platelet-activating factor acetylhydrolase (PAF-AH), which degrades oxidized phospholipids. In addition, two other enzymatic activities are exhibited by LDL(-). The first is type C phospholipase activity, which degrades both lysophosphatidylcholine (LysoPLC-like activity) and sphingomyelin (SMase-like activity). The second is ceramidase activity (CDase-like). Based on the complementarity of the products and substrates of these different activities, this review speculates on the possibility that LDL(-) may act as a sort of multienzymatic complex in which these enzymatic activities exert a concerted action. We hypothesize that LysoPLC/SMase and CDase activities could be generated by conformational changes in apoB-100 and that both activities occur in proximity to PAF-AH, making it feasible to discern a coordinated action among them.


Subject(s)
Atherosclerosis , Lipoproteins, LDL , Humans , Lipoproteins, LDL/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Phospholipids , Sphingomyelins/metabolism , Arteries/metabolism
8.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36829998

ABSTRACT

Owing to the high risk of recurrence, identifying indicators of carotid plaque vulnerability in atherothrombotic ischemic stroke is essential. In this study, we aimed to identify modified LDLs and antioxidant enzymes associated with plaque vulnerability in plasma from patients with a recent ischemic stroke and carotid atherosclerosis. Patients underwent an ultrasound, a CT-angiography, and an 18F-FDG PET. A blood sample was obtained from patients (n = 64, 57.8% with stenosis ≥50%) and healthy controls (n = 24). Compared to the controls, patients showed lower levels of total cholesterol, LDL cholesterol, HDL cholesterol, apolipoprotein B (apoB), apoA-I, apoA-II, and apoE, and higher levels of apoJ. Patients showed lower platelet-activating factor acetylhydrolase (PAF-AH) and paraoxonase-1 (PON-1) enzymatic activities in HDL, and higher plasma levels of oxidized LDL (oxLDL) and electronegative LDL (LDL(-)). The only difference between patients with stenosis ≥50% and <50% was the proportion of LDL(-). In a multivariable logistic regression analysis, the levels of LDL(-), but not of oxLDL, were independently associated with the degree of carotid stenosis (OR: 5.40, CI: 1.15-25.44, p < 0.033), the presence of hypoechoic plaque (OR: 7.52, CI: 1.26-44.83, p < 0.027), and of diffuse neovessels (OR: 10.77, CI: 1.21-95.93, p < 0.033), indicating that an increased proportion of LDL(-) is associated with vulnerable atherosclerotic plaque.

9.
J Transl Med ; 21(1): 131, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36805772

ABSTRACT

BACKGROUND: 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) identifies carotid plaque inflammation and predicts stroke recurrence. AIM: Our aim was to evaluate the performance of soluble low-density lipoprotein receptor-related protein 1 (sLRP1) as an indicator of carotid plaque inflammation. METHODS: A prospective study was conducted among adult patients with recent (< 7 days) anterior circulation ischemic stroke and at least one atherosclerotic plaque in the ipsilateral internal carotid artery. Patients underwent an early (< 15 days from inclusion) 18F-FDG PET, and the maximum standardized uptake value (SUVmax) within the plaque was measured. sLRP1 levels were measured in plasma samples by ELISA. The association of sLRP1 with SUVmax was assessed using bivariate and multivariable linear regression analyses. Hazard ratios (HR) were estimated with Cox regression to evaluate the association between circulating sLRP1 and stroke recurrence. RESULTS: The study was conducted with 64 participants, of which 57.8% had ≥ 50% carotid stenosis. The multivariable linear and logistic regression analyses showed that sLRP1 was independently associated with (i) SUVmax within the plaque (ß = 0.159, 95% CI 0.062-0.257, p = 0.002) and (ii) a probability of presenting SUVmax ≥ 2.85 g/mL (OR = 1.31, 95% CI 1.00-1.01, p = 0.046), respectively. Participants with stroke recurrence showed higher sLRP1 levels at baseline [6447 ng/mL (4897-11163) vs. 3713 ng/mL (2793-4730); p = 0.018]. CONCLUSIONS: sLRP1 was independently associated with carotid plaque inflammation as measured by 18F-FDG PET in patients with recent ischemic stroke and carotid atherosclerosis.


Subject(s)
Ischemic Stroke , Plaque, Atherosclerotic , Stroke , Adult , Humans , Fluorodeoxyglucose F18 , Plaque, Atherosclerotic/diagnostic imaging , Prospective Studies , Stroke/diagnostic imaging , Biomarkers , Inflammation , Lipoproteins, LDL
10.
Transl Stroke Res ; 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536168

ABSTRACT

Atherosclerosis is responsible for 20% of ischemic strokes, and severe carotid stenosis is associated with a higher incidence of first-ever and recurrent strokes. The release of pro-inflammatory mediators into the blood in severe atherosclerosis may aggravate endothelial dysfunction after stroke contributing to impair disease outcomes. We hypothesize that environments of severe carotid atherosclerotic disease worsen endothelial dysfunction in stroke linked to enhanced risk of further cerebrovascular events. We mounted nonischemic common carotid arteries from 2- to 4-month-old male Oncins France 1 mice in tissue baths for isometric contraction force measurements and exposed them to serum from men with a recent ischemic stroke and different degrees of carotid stenosis: low- or moderate-grade stenosis (LMGS; < 70%) and high-grade stenosis (HGS; ≥ 70%). The results show that serum from stroke patients induced an impairment of acetylcholine relaxations in mice carotid arteries indicative of endothelium dysfunction. This effect was more pronounced after incubation with serum from patients with a recurrent stroke or vascular death within 1 year of follow-up. When patients were stratified according to the degree of stenosis, serum from HGS patients induced more pronounced carotid artery endothelial dysfunction, an effect that was associated with enhanced circulating levels of IL-1ß. Mechanistically, endothelial dysfunction was prevented by both nonselective and selective COX blockade. Altogether, the present findings add knowledge on the understanding of the mechanisms involved in the increased risk of stroke in atherosclerosis and suggest that targeting COX in the carotid artery wall may represent a potential novel therapeutic strategy for secondary stroke prevention.

11.
J Med Internet Res ; 24(10): e40011, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36190742

ABSTRACT

BACKGROUND: The COVID-19 outbreak highlighted the importance of rapid access to research. OBJECTIVE: The aim of this study was to investigate research communication related to COVID-19, the level of openness of papers, and the main topics of research into this disease. METHODS: Open access (OA) uptake (typologies, license use) and the topic evolution of publications were analyzed from the start of the pandemic (January 1, 2020) until the end of a year of widespread lockdown (March 1, 2021). RESULTS: The sample included 95,605 publications; 94.1% were published in an OA form, 44% of which were published as Bronze OA. Among these OA publications, 42% do not have a license, which can limit the number of citations and thus the impact. Using a topic modeling approach, we found that articles in Hybrid and Green OA publications are more focused on patients and their effects, whereas the strategy to combat the pandemic adopted by different countries was the main topic of articles selecting publication via the Gold OA route. CONCLUSIONS: Although OA scientific production has increased, some weaknesses in OA practice, such as lack of licensing or under-researched topics, still hold back its effective use for further research.


Subject(s)
COVID-19 , Bibliometrics , COVID-19/epidemiology , Communicable Disease Control , Disease Outbreaks , Humans , Pandemics , Publications
12.
Biomolecules ; 12(8)2022 08 19.
Article in English | MEDLINE | ID: mdl-36009035

ABSTRACT

The final maturation step of the 60S ribosomal subunit requires the release of eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) to enter the pool of mature ribosomes capable of engaging in translation. This process is mediated by the concerted action of the Elongation Factor-like 1 (human EFL1, yeast Efl1) GTPase and its effector, the Shwachman-Bodian-Diamond syndrome protein (human SBDS, yeast Sdo1). Mutations in these proteins prevent the release of eIF6 and cause a disease known as Shwachman-Diamond Syndrome (SDS). While some mutations in EFL1 or SBDS result in insufficient proteins to meet the cell production of mature large ribosomal subunits, others do not affect the expression levels with unclear molecular defects. We studied the functional consequences of one such mutation using Saccharomyces cerevisiae Efl1 R1086Q, equivalent to human EFL1 R1095Q described in SDS patients. We characterised the enzyme kinetics and energetic basis outlining the recognition of this mutant to guanine nucleotides and Sdo1, and their interplay in solution. From our data, we propose a model where the conformational change in Efl1 depends on a long-distance network of interactions that are disrupted in mutant R1086Q, whereby Sdo1 and the guanine nucleotides no longer elicit the conformational changes previously described in the wild-type protein. These findings point to the molecular malfunction of an EFL1 mutant and its possible impact on SDS pathology.


Subject(s)
GTP Phosphohydrolases , Saccharomyces cerevisiae , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Guanine Nucleotides/metabolism , Humans , Peptide Elongation Factor 1/metabolism , Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
13.
Appl Microbiol Biotechnol ; 106(8): 2883-2902, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35412129

ABSTRACT

The overproduction of recombinant proteins in Escherichia coli leads to insoluble aggregates of proteins called inclusion bodies (IBs). IBs are considered dynamic entities that harbor high percentages of the recombinant protein, which can be found in different conformational states. The production conditions influence the properties of IBs and recombinant protein recovery and solubilization. The E. coli growth in thermoinduced systems is generally carried out at 30 °C and then recombinant protein production at 42 °C. Since the heat shock response in E. coli is triggered above 34 °C, the synthesis of heat shock proteins can modify the yields of the recombinant protein and the structural quality of IBs. The objective of this work was to evaluate the effect of different pre-induction temperatures (30 and 34 °C) on the growth of E. coli W3110 producing the human granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) and on the IBs structure in a λpL/pR-cI857 thermoinducible system. The recombinant E. coli cultures growing at 34 °C showed a ~ 69% increase in the specific growth rate compared to cultures grown at 30 °C. The amount of rHuGM-CSF in IBs was significantly higher in cultures grown at 34 °C. Main folding chaperones (DnaK and GroEL) were associated with IBs and their co-chaperones (DnaJ and GroES) with the soluble protein fraction. Finally, IBs from cultures that grew at 34 °C had a lower content of amyloid-like structure and were more sensitive to proteolytic degradation than IBs obtained from cultures at 30 °C. Our study presents evidence that increasing the pre-induction temperature in a thermoinduced system allows obtaining higher recombinant protein and reducing amyloid contents of the IBs. KEY POINTS: • Pre-induction temperature determines inclusion bodies architecture • In pre-induction (above 34 °C), the heat shock response increases recombinant protein production • Inclusion bodies at higher pre-induction temperature show a lower amyloid content.


Subject(s)
Inclusion Bodies , Recombinant Proteins , Humans , Escherichia coli/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Recombinant Proteins/biosynthesis , Temperature
14.
Transl Stroke Res ; 13(5): 745-756, 2022 10.
Article in English | MEDLINE | ID: mdl-35237947

ABSTRACT

18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) identifies carotid plaque inflammation and predicts stroke recurrence in patients with atherothrombotic stroke. The aim of the study was to identify plasma inflammatory biomarkers associated with plaque inflammation according to 18F-FDG uptake. We conducted a prospective study of consecutive adult patients with a recent (< 7 days) anterior circulation ischemic stroke and at least one atherosclerotic plaque in the ipsilateral internal carotid artery. We included 64 patients, 57.8% of whom showed a carotid stenosis ≥ 50%. All patients underwent an early (< 15 days from inclusion) 18F-FDG PET, and a blood sample was obtained at days 7 ± 1 from the stroke. The plasma concentration of 16 inflammation-related molecules was analyzed in a Luminex using xMAP technology. Multivariable linear regression was used to assess the association between plasma biomarkers and the standardized uptake value (SUV) of 18F-FDG uptake. Soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), and fractalkine (FKN) were independently associated with plaque inflammation (ß = 0.121, 95% CI 0.061-0.181, p < 0.001; ß = 0.144, 95% CI 0.012-0.276, p = 0.033; ß = 0.136, 95% CI 0.037-0.235, p = 0.008). In a multivariable logistic regression analysis, sICAM-1 was associated with SUVmax ≥ 2.85 (OR = 1.02, 95% CI 1.00-1.03, p = 0.020). Multivariable Cox regression was used to assess the association between biomarkers and stroke recurrence. sICAM-1 was associated with stroke recurrence (HR = 1.03, 95% CI 1.00-1.05, p = 0.002). In summary, elevated concentrations of sICAM-1 were associated with carotid plaque inflammation and an increased risk of stroke recurrence in patients with recent ischemic stroke and carotid atherosclerosis.


Subject(s)
Carotid Stenosis , Ischemic Stroke , Plaque, Atherosclerotic , Stroke , Biomarkers , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Inflammation/complications , Intercellular Adhesion Molecule-1 , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Positron-Emission Tomography , Prospective Studies , Stroke/complications
15.
Technol Cult ; 63(1): 264-266, 2022.
Article in English | MEDLINE | ID: mdl-35000982
16.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613609

ABSTRACT

Electronegative low-density lipoprotein (LDL(-)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the presence of some phospholipolytic activities, including platelet-activating factor acetylhydrolase (PAF-AH), phospholipase C (PLC), and sphingomyelinase (SMase), in LDL(-). However, these enzymes' activities do not explain the increased Sph content, which typically derives from Cer degradation. In the present study, we analyzed the putative presence of ceramidase (CDase) activity, which could explain the increased Sph content. Thin layer chromatography (TLC) and lipidomic analysis showed that Cer, Sph, and NEFA spontaneously increased in LDL(-) incubated alone at 37 °C, in contrast with native LDL(+). An inhibitor of neutral CDase prevented the formation of Sph and, in turn, increased Cer content in LDL(-). In addition, LDL(-) efficiently degraded fluorescently labeled Cer (NBD-Cer) to form Sph and NEFA. These observations defend the existence of the CDase-like activity's association with LDL(-). However, neither the proteomic analysis nor the Western blot detected the presence of an enzyme with known CDase activity. Further studies are thus warranted to define the origin of the CDase-like activity detected in LDL(-).


Subject(s)
Fatty Acids, Nonesterified , Proteomics , Humans , Ceramidases , Sphingosine/metabolism , Lysophosphatidylcholines , Lipoproteins, LDL
17.
J Stroke Cerebrovasc Dis ; 30(12): 106144, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34649037

ABSTRACT

OBJECTIVES: Circulating Endothelial Progenitor Cells (EPCs) predict cardiovascular outcomes in patients with coronary disease. However, the predictive value of EPCs after ischemic stroke is not well established. We aimed to study the prognostic role of EPCs in patients with acute ischemic stroke and carotid atherosclerosis, focusing on post-stroke functional outcome and stroke recurrences. MATERIALS AND METHODS: We studied consecutive adult patients with an acute (<7 days) anterior circulation ischemic stroke and carotid atherosclerosis. Cardioembolic strokes were excluded. We measured circulating EPCs by flow cytometry (CD34+/CD133+/KDR+) at inclusion (7±1 days after stroke) and at one year of follow-up. At three months and at one year we registered the modified Rankin Scale score, stroke recurrences and coronary syndromes during the follow-up. RESULTS: We studied 80 patients with a mean age of 74.3±10.4 years. We divided the population in tertiles according to the EPCs count. At three months we observed a favorable outcome in 25/36 (69.4%) patients in the lowest, 19/22 (86.4%) in the medium and 21/22 (95.5%) in the highest tercile (p=0.037). In the multivariable analysis a higher EPCs count was associated with favorable functional outcome after adjusting for age and baseline NIHSS score (OR=3.61, 95%CI 1.34-9.76; p=0.011). This association persisted at one year of follow-up. We did not find association between counts of EPCs and stroke recurrence. CONCLUSIONS: In patients with acute ischemic stroke and carotid atherosclerosis, a higher count of EPCs was associated with favorable functional outcome in the mid and long-term follow-up. Counts of EPCs did not predict stroke recurrences.


Subject(s)
Carotid Artery Diseases , Endothelial Progenitor Cells , Ischemic Stroke , Aged , Aged, 80 and over , Carotid Artery Diseases/physiopathology , Cell Count , Humans , Ischemic Stroke/pathology , Middle Aged , Prognosis , Recurrence
18.
Biomedicines ; 9(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34680453

ABSTRACT

Impaired HDL-mediated macrophage cholesterol efflux and higher circulating concentrations of trimethylamine N-oxide (TMAO) levels are independent risk factors for cardiovascular mortality. The TMAO precursors, γ-butyrobetaine (γBB) and Trimethyllysine (TML), have also been recently associated with cardiovascular death, but their interactions with HDL-mediated cholesterol efflux remain unclear. We aimed to determine the associations between APOB depleted plasma-mediated macrophage cholesterol efflux and plasma TMAO, γBB, and TML concentrations and explore their association with two-year follow-up mortality in patients with acute ST-elevation myocardial infarction (STEMI) and unstable angina (UA). Baseline and ATP-binding cassette transporter ABCA1 and ABCG1 (ABCA1/G1)-mediated macrophage cholesterol efflux to APOB-depleted plasma was decreased in patients with STEMI, and the latter was further impaired in those who died during follow-up. Moreover, the circulating concentrations of TMAO, γBB, and TML were higher in the deceased STEMI patients when compared with the STEMI survivors or UA patients. However, after statistical adjustment, only ABCA1/G1-mediated macrophage cholesterol efflux remained significantly associated with mortality. Furthermore, neither the TMAO, γBB, nor TML levels altered the HDL-mediated macrophage cholesterol efflux in vitro. We conclude that impaired ABCA1/G1-mediated macrophage cholesterol efflux is independently associated with mortality at follow-up in STEMI patients.

19.
Curr Res Struct Biol ; 3: 153-164, 2021.
Article in English | MEDLINE | ID: mdl-34337436

ABSTRACT

ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data shows that quaternary structure of EspB is conserved across slow growing species, but not in the fast growing M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.

20.
Mol Genet Genomics ; 296(6): 1263-1278, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34453201

ABSTRACT

Nascent ribosomal 60S subunits undergo the last maturation steps in the cytoplasm. The last one involves removing the anti-association factor eIF6 from the 60S ribosomal surface by the joint action of the Elongation Factor-like 1 (EFL1) GTPase and the SBDS protein. Herein, we studied the evolutionary relationship of the EFL1 and EF-2 protein families and the functional conservation within EFL1 orthologues. Phylogenetic analysis demonstrated that the EFL1 proteins are exclusive of eukaryotes and share an evolutionary origin with the EF-2 and EF-G protein families. EFL1 proteins originated by gene duplication from the EF-2 proteins and specialized in ribosome maturation while the latter retained their function in translation. Some organisms have more than one EFL1 protein resulting from alternative splicing, while others are encoded in different genes originated by gene duplication. However, the function of these alternative EFL1 proteins is still unknown. We performed GTPase activity and complementation assays to study the functional conservation of EFL1 homologs alone and together with their SBDS counterparts. None of the orthologues or cross-species combinations could replace the function of the corresponding yeast EFL1•SBDS binomial. The complementation of SBDS interspecies chimeras indicates that domain 2 is vital for its function together with EFL1 and the 60S subunit. The results suggest a functional species-specificity and possible co-evolution between EFL1, SBDS, and the 60S ribosomal subunit. These findings set the basis for further studies directed to understand the molecular evolution of these proteins and their impact on ribosome biogenesis and disease.


Subject(s)
Peptide Elongation Factor 2/metabolism , Peptide Elongation Factors/genetics , Proteins/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism , Alternative Splicing/genetics , Amino Acid Sequence/genetics , Eukaryota/genetics , Evolution, Molecular , Gene Duplication/genetics , Humans , Peptide Elongation Factor 2/genetics , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...