Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 35(7): 109129, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34010649

ABSTRACT

Mitochondria are highly dynamic organelles subjected to fission and fusion events. During mitosis, mitochondrial fission ensures equal distribution of mitochondria to daughter cells. If and how this process can actively drive mitotic progression remains largely unknown. Here, we discover a pathway linking mitochondrial fission to mitotic progression in mammalian cells. The mitochondrial fission factor (MFF), the main mitochondrial receptor for the Dynamin-related protein 1 (DRP1), is directly phosphorylated by Protein Kinase D (PKD) specifically during mitosis. PKD-dependent MFF phosphorylation is required and sufficient for mitochondrial fission in mitotic but not in interphasic cells. Phosphorylation of MFF is crucial for chromosome segregation and promotes cell survival by inhibiting adaptation of the mitotic checkpoint. Thus, PKD/MFF-dependent mitochondrial fission is critical for the maintenance of genome integrity during cell division.


Subject(s)
Mitochondrial Proteins/genetics , Mitosis/physiology , Protein Kinase C/metabolism , Animals , Humans , Mice , Signal Transduction
2.
EMBO Rep ; 20(9): e48235, 2019 09.
Article in English | MEDLINE | ID: mdl-31353801

ABSTRACT

Caspase-4, the cytosolic LPS sensor, and gasdermin D, its downstream effector, constitute the non-canonical inflammasome, which drives inflammatory responses during Gram-negative bacterial infections. It remains unclear whether other proteins regulate cytosolic LPS sensing, particularly in human cells. Here, we conduct a genome-wide CRISPR/Cas9 screen in a human monocyte cell line to identify genes controlling cytosolic LPS-mediated pyroptosis. We find that the transcription factor, IRF2, is required for pyroptosis following cytosolic LPS delivery and functions by directly regulating caspase-4 levels in human monocytes and iPSC-derived monocytes. CASP4, GSDMD, and IRF2 are the only genes identified with high significance in this screen highlighting the simplicity of the non-canonical inflammasome. Upon IFN-γ priming, IRF1 induction compensates IRF2 deficiency, leading to robust caspase-4 expression. Deficiency in IRF2 results in dampened inflammasome responses upon infection with Gram-negative bacteria. This study emphasizes the central role of IRF family members as specific regulators of the non-canonical inflammasome.


Subject(s)
Caspases, Initiator/metabolism , Interferon Regulatory Factor-2/metabolism , Caspases, Initiator/genetics , Cell Death/drug effects , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Humans , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-2/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Monocytes/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , U937 Cells
3.
J Exp Med ; 214(9): 2671-2693, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28716882

ABSTRACT

The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.


Subject(s)
Golgi Apparatus/physiology , Inflammasomes/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Protein Kinase C/physiology , Animals , Diglycerides/metabolism , Endoplasmic Reticulum/physiology , Humans , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...