Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Zool ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003665

ABSTRACT

Mammal species globally exhibit distribution patterns conditioned by environmental conditions and human impact. The Mediterranean basin provides an ideal system to study these effects due to its diverse climate, and habitat conditions. In this work, we aim to assess the impact of landscape heterogeneity and anthropization degree on terrestrial mammal diversity in this region. Accordingly, we deployed over 300 camera traps across 28 sites for 3 months. Detected mammal species (weighing more than 1kg) were classified as domestic carnivores, domestic ungulates, wild carnivores, wild ungulates, lagomorphs, and large rodents. Alpha and beta diversity were calculated for each group and all wild mammals. Simple linear regressions and multimodal analysis were conducted between mammal diversities and climate, environmental conditions, landscape heterogeneity, and anthropization degree variables. Redundancy analyses were performed to identify variables and species determining the mammalian community composition. Indexes measuring landscape heterogeneity, anthropization degree, and its 30-year change did not correlate with mammal diversity. However, the difference in elevation within sites and domestic carnivore abundance showed a significant positive correlation with some of the diversity indexes. Nonetheless, rainfall and mean elevation factors generally showed the highest correlation with mammal diversity. Instead, a few influential species, including generalists and open-habitat specialists, highlighted the importance of conserving open areas, as well as the importance of the Pyrenees region as a key habitat for certain species. Therefore, climatic variables emerged as the key determinants of mammal diversity, highlighting climate change as a potential threat to mammal diversity in this area.

2.
Sci Total Environ ; 876: 162677, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36894101

ABSTRACT

In fire-prone regions, fire is a major natural disturbance which shapes ecosystem function and community composition. Fire has a direct and dramatic effect on soil fauna and, especially, on non-mobile species such as land snails. The factors that make the Mediterranean Basin a fire-prone region may also lead to the appearance after fires of certain functional traits related to ecological and physiological characteristics. Knowledge of how community structure and function change along the post-fire succession will be useful for understanding the processes that drive biodiversity patterns in burnt areas and for implementing appropriate biodiversity management strategies. Here, we examine long-interval taxonomic and functional changes occurred in a snail community four and 18 years after a fire in the Sant Llorenç del Munt i l'Obac Natural Park (NE Spain). Our field-based study demonstrates that the land snail assemblage responds both taxonomically and functionally to fire and that there was a clear replacement of dominant species from the first to the second sampling period. Variation in community composition between different post-fire ages can be attributed to snail species traits and successional changes in post-fire habitat conditions. At taxonomic level, there was great variation in snail species turnover between both periods, being the development of the understorey vegetation structure the main driver of this variation. The replacement of functional traits between times since fire suggests that xerophilic and mesophilic preferences play an important role after fire and are largely determined by the complexity of post-fire microhabitats. Our analysis indicates that immediately after a fire there is a time-window of opportunity that attracts species specializing in early successional habitats, which thereafter are replaced due to the changing conditions resulting from succession. Consequently, knowing the functional traits of species is important for determining the impacts of disturbances on the taxonomic and functional communities.


Subject(s)
Ecosystem , Wildfires , Biodiversity , Food , Spain , Forests
3.
PLoS One ; 17(3): e0265246, 2022.
Article in English | MEDLINE | ID: mdl-35290396

ABSTRACT

The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site-for example in the Mediterranean Basin-makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes.


Subject(s)
Ecosystem , Environmental Biomarkers , Biodiversity , Conservation of Natural Resources/methods , Environmental Monitoring/methods
4.
PLoS One ; 12(3): e0173599, 2017.
Article in English | MEDLINE | ID: mdl-28355225

ABSTRACT

Wildfires play a determining role in the composition and structure of many plant and animal communities. On the other hand, climate change is considered to be a major driver of current and future fire regime changes. Despite increases in drought in many areas of the world, the effects of aridity on post-fire colonization by animals have been rarely addressed. This study aims to analyse how a regional aridity gradient affects post-fire recovery of vegetation, bird species richness and the numbers of four early to middle-successional warbler species associated with the shrub cover. The database contains bird relative abundance and environmental variables from 3072 censuses in 695 transects located in 70 recently burnt areas (1 to 11 years after wildfire) in Catalonia (Spain), which were sampled between 2006 and 2013. Generalized linear mixed models (GLMMs) showed that plant cover was affected by time since fire, aridity and forest management. However, only the highest vegetation height layer (>100 cm) recovered slower in arid areas after fire. Time since fire positively influenced bird species richness and the relative abundance of the four focal species. The post-fire recovery of Melodious (Hippolais polyglotta) and Subalpine warblers (Sylvia cantillans) was hampered by aridity. Although this was not demonstrated for Dartford (S. undata) and Sardinian warblers (S. melanocephala), their occurrence was low in the driest areas during the first three years after fire. Overall, this study suggests that future increases in aridity can affect plant regeneration after fire and slow down the recovery of animal populations that depend on understorey and shrublands. Given the recently highlighted increases in aridity and fire frequency in Mediterranean-climate regions, improved knowledge on how aridity affects ecological succession is especially necessary.


Subject(s)
Acclimatization/physiology , Animal Distribution/physiology , Fires/history , Plant Development/physiology , Plant Dispersal/physiology , Songbirds/physiology , Animals , Biodiversity , Climate , Ecosystem , History, 21st Century , Linear Models , Population Dynamics , Spain , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...