Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 26 Suppl 1: S91-S108, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37840024

ABSTRACT

Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.


Subject(s)
Biological Evolution , Ecosystem , Mutation
2.
Sci Total Environ ; 833: 155123, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35405245

ABSTRACT

In rivers, scale-dependent feedbacks resulting from physical habitat modifications control the lateral expansion of submerged plant patches, while the mechanisms that limit patch expansion on a longitudinal dimension remain unknown. Our objective was to investigate the effects of patch length on physical habitat modification (i.e., flow velocity, sediment grain size distribution), the consequences for biogeochemical conditions (i.e., accumulation/depletion of nutrients, microbial respiration), and for individual plants (i.e., shoot length). We measured all of these parameters along natural patches of increasing length. These measurements were performed at two sites that differed in mean flow velocity, sediment grain size, and trophic level. The results showed a significant effect of patch length on organic matter content and nutrient concentrations in interstitial water. For the shortest patches sampled, all of these parameters had similar values to those measured at the upstream control position. For longer patches, organic matter content and orthophosphate and ammonium concentrations increased within the patch compared to the upstream bare sediment, whereas nitrate concentrations decreased, suggesting changes in vertical water exchanges and an increase in anaerobic microbial activities. Furthermore, plant height was related to patch length by a quadratic pattern, probably due reduced hydrodynamic stress occurring for increasing patch length, combined with conditions that are less favourable for plants over a threshold length, possibly due to the light limitation or to the high concentration of ammonium that in the concentration range we measured may be toxic for plants. The threshold lengths over which patches influence the nutrient concentrations were reduced for the site with higher nutrient levels. We demonstrated that the plant-induced modifications of the physical habitat exert important effects on biogeochemical conditions, with possible consequences for patch dynamics and ecosystem functioning.


Subject(s)
Ammonium Compounds , Ecosystem , Plants , Rivers , Water
3.
Ecology ; 99(4): 832-847, 2018 04.
Article in English | MEDLINE | ID: mdl-29437225

ABSTRACT

Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems.


Subject(s)
Ecosystem , Rivers , Biodiversity , Models, Theoretical , Plants
4.
Article in English | MEDLINE | ID: mdl-28478209

ABSTRACT

Sexual selection has been widely explored from numerous perspectives, including behavior, ecology, and to a lesser extent, energetics. Hormones, and specifically androgens such as testosterone, are known to trigger sexual behaviors. Their effects are therefore of interest during the breeding period. Our work investigates the effect of testosterone on the relationship between cellular bioenergetics and contractile properties of two skeletal muscles involved in sexual selection in tree frogs. Calling and locomotor abilities are considered evidence of good condition in Hyla males, and thus server as proxies for male quality and attractiveness. Therefore, how these behaviors are powered efficiently remains of both physiological and behavioral interest. Most previous research, however, has focused primarily on biomechanics, contractile properties or mitochondrial enzyme activities. Some have tried to establish a relationship between those parameters but to our knowledge, there is no study examining muscle fiber bioenergetics in Hyla arborea. Using chronic testosterone supplementation and through an integrative study combining fiber bioenergetics and contractile properties, we compared sexually dimorphic trunk muscles directly linked to chronic sound production to a hindlimb muscle (i.e. gastrocnemius) that is particularly adapted for explosive movement. As expected, trunk muscle bioenergetics were more affected by testosterone than gastrocnemius muscle. Our study also underlines contrasted energetic capacities between muscles, in line with contractile properties of these two different muscle phenotypes. The discrepancy of both substrate utilization and contractile properties is consistent with the specific role of each muscle and our results are elucidating another integrative example of a muscle force-endurance trade-off.


Subject(s)
Anura/physiology , Courtship , Sexual Behavior, Animal/physiology , Testosterone/metabolism , Animals , Male , Mitochondria/metabolism , Mitochondria/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Testosterone/pharmacology , Vocalization, Animal/physiology
6.
PLoS One ; 10(9): e0138086, 2015.
Article in English | MEDLINE | ID: mdl-26367004

ABSTRACT

In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.


Subject(s)
Cellulose/biosynthesis , Cyperaceae/growth & development , Ecosystem , Plant Stems/growth & development , Tidal Waves
7.
PLoS One ; 10(3): e0118687, 2015.
Article in English | MEDLINE | ID: mdl-25799017

ABSTRACT

Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.


Subject(s)
Cyperaceae/physiology , Tidal Waves , Wetlands , Plant Shoots/physiology , Seeds/physiology , Ships , Wind
8.
Naturwissenschaften ; 102(3-4): 12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25740225

ABSTRACT

Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopiaxbohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27% for plants originating from rhizomes and by 38% for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20%. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25% for plants originating from rhizomes and 70, 61 and 55% for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species.


Subject(s)
Allelopathy/physiology , Introduced Species , Polygonaceae/physiology , Sambucus/physiology , Ecosystem , Europe
9.
Front Plant Sci ; 6: 43, 2015.
Article in English | MEDLINE | ID: mdl-25699070

ABSTRACT

The response of aquatic plants to abiotic factors is a crucial study topic, because the diversity of aquatic vegetation is strongly related to specific adaptations to a variety of environments. This biodiversity ensures resilience of aquatic communities to new and changing ecological conditions. In running water, hydrodynamic disturbance is one of the key factors in this context. While plant adaptations to resource stress (nutrients, light…) are well documented, adaptations to mechanical stress, particularly flow, are largely unknown. The submerged species Egeria densa was used in an experiment to detect whether the presence or absence of hydrodynamic stress causes plant thigmomorphogenetic responses (i) in terms of plant biogenic silica (BSi), cellulose and lignin concentrations, and (ii) in terms of plant strength. Plant silica concentrations, as well as lignin concentrations were significantly higher in presence of hydrodynamic stress. These physiological changes are accompanied by some significant changes in stem biomechanical traits: stem resistance to tensile forces (breaking force and breaking strength) and stiffness were higher for plants exposed to hydrodynamic stress. We conclude that the response of this aquatic plant species to mechanical stress is likely the explaining factor for a higher capacity to tolerate stress through the production of mechanically hardened shoots.

10.
New Phytol ; 204(3): 620-630, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25059468

ABSTRACT

Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.


Subject(s)
Denitrification/physiology , Plant Extracts/chemistry , Polygonaceae/metabolism , Pseudomonas/drug effects , Aerobiosis , Anaerobiosis , Biological Assay , Introduced Species , Kinetics , Molecular Structure , Oxygen Consumption , Plant Weeds , Pseudomonas/classification , Pseudomonas/genetics , Soil/chemistry
11.
Ann Bot ; 112(9): 1869-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24187030

ABSTRACT

BACKGROUND AND AIMS: Wetlands are impacted by changes in hydrological regimes that can lead to periods of low water levels. During these periods, aquatic plants experience a drastic change in the mechanical conditions that they encounter, from low gravitational and tensile hydrodynamic forces when exposed to flow under aquatic conditions, to high gravitational and bending forces under terrestrial conditions. The objective of this study was to test the capacity of aquatic plants to produce self-supporting growth forms when growing under aerial conditions by assessing their resistance to terrestrial mechanical conditions and the associated morpho-anatomical changes. METHODS: Plastic responses to aerial conditions were assessed by sampling Berula erecta, Hippuris vulgaris, Juncus articulatus, Lythrum salicaria, Mentha aquatica, Myosotis scorpioides, Nuphar lutea and Sparganium emersum under submerged and emergent conditions. The cross-sectional area and dry matter content (DMC) were measured in the plant organs that bear the mechanical forces, and their biomechanical properties in tension and bending were assessed. KEY RESULTS: All of the species except for two had significantly higher stiffness in bending and thus an increased resistance to terrestrial mechanical conditions when growing under emergent conditions. This response was determined either by an increased allocation to strengthening tissues and thus a higher DMC, or by an increased cross-sectional area. These morpho-anatomical changes also resulted in increased strength and stiffness in tension. CONCLUSIONS: The capacity of the studied species to colonize this fluctuating environment can be accounted for by a high degree of phenotypic plasticity in response to emersion. Further investigation is however needed to disentangle the finer mechanisms behind these responses (e.g. allometric relations, tissue make-up), their costs and adaptive value.


Subject(s)
Aquatic Organisms/physiology , Magnoliopsida/physiology , Plant Development , Biomechanical Phenomena , Magnoliopsida/anatomy & histology , Phenotype , Tensile Strength
12.
PLoS One ; 8(10): e77242, 2013.
Article in English | MEDLINE | ID: mdl-24204778

ABSTRACT

As a consequence of global warming, it is important to characterise the potential changes occurring for some functional processes through the intra-specific study of key species. Changes in species distribution, particularly when key or engineer species are affected, should contribute to global changes in ecosystem functioning. In this study, we examined the potential consequences induced by global warming on ecosystem functioning in term of organic matter recycling. We compared consumption of leaf litter by some shredder populations (Gammarus pulex) between five tree species inhabiting continental (i.e., the northern region of the Rhône River Valley) and/or Mediterranean (i.e., the southern region of the Rhône River Valley) conditions. To consider any potential adaptation of the gammarid population to vegetation in the same climate conditions, three populations of the key shredder Gammarus pulex from the northern region and three from the southern region of the Rhône River Valley were used. We experimentally compared the effects of the geographical origin of both the gammarid populations and the leaf litter species on the shredding activity and the physiological state of animals (through body triglyceride content). This study demonstrated that leaf toughness is more important than geographical origin for determining shredder leaf litter consumption. The overall consumption rate of the gammarid populations from the southern region of Rhône Valley was much higher than that of the populations from the northern region, but no clear differences between the origins of the leaf litter (i.e., continental vs. Mediterranean) were observed. The northwards shift of G. pulex populations adapted to warmer conditions might significantly modify organic matter recycling in continental streams. As gammarid populations can demonstrate local adaptations to certain leaf species as a trophic resource, changes in riparian vegetation associated with climate change might locally affect the leaf litter degradation process by this shredder.


Subject(s)
Amphipoda/physiology , Plant Leaves , Soil/chemistry , Animals , Biodegradation, Environmental , Climate Change , Ecosystem , France , Population Dynamics , Rivers , Trees/physiology
13.
Glob Chang Biol ; 19(3): 763-74, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23504834

ABSTRACT

In a global change context, the intensity and the frequency of drastic low flow periods or drought events will most likely increase to a substantial extent over the coming decades, leading to a modification in the abiotic characteristics of wetlands. This change in environmental parameters may induce severe shifts in plant and animal communities and the functioning of ecosystems. In this study, we experimentally estimated the effect of drought and the accumulation of ammonia (NH3 ) on the feeding activities of three generalist macroinvertebrates (i.e. Gammarus pulex, Gammarus roeselii and Asellus aquaticus) on three types of organic matter: leaves of Berula erecta growing in submerged conditions, leaves of the same species growing in emerged conditions and dead leaves of Alnus glutinosa. We observed a modification in the biomechanical and stoichiometric characteristics of the plants as a result of the emersion of the aquatic plants. This shift produced a substantial decrease in organic matter recycling by invertebrates and in their associated physiological ability (i.e. the energy stores of the animals) to face conditions associated with environmental change. Moreover, the accumulation of NH3 amplified the negative effect of emersion. This snowball effect on invertebrates may profoundly modify the functioning of ecosystems, particularly in terms of organic matter production/degradation and carbon mineralization.


Subject(s)
Ammonia/analysis , Fresh Water , Invertebrates/physiology , Wetlands , Animals , Ergosterol/metabolism , Feeding Behavior , Glycogen/metabolism , Plant Leaves/metabolism
14.
J Exp Bot ; 63(17): 6115-23, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23028018

ABSTRACT

For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats.


Subject(s)
Boraginaceae/anatomy & histology , Mentha/anatomy & histology , Plant Stems/anatomy & histology , Boraginaceae/growth & development , Boraginaceae/metabolism , Fertilizers , Fresh Water , Mentha/growth & development , Mentha/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Stress, Mechanical
15.
New Phytol ; 191(4): 1141-1149, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21585390

ABSTRACT

External mechanical forces resulting from the pressure exerted by wind or water movement are a major stress factor for plants and may cause regular disturbances in many ecosystems. A plant's ability to resist these forces relies either on minimizing the forces encountered by the plant (avoidance strategy), or on maximizing its resistance to breakage (tolerance strategy). We investigated plant resistance strategies using aquatic vegetation as a model, and examined whether avoidance and tolerance are negatively correlated. We tested the avoidance-tolerance correlation across 28 species using a phylogenetically corrected analysis, after construction of a molecular phylogeny for the species considered. Different species demonstrated contrasting avoidance and tolerance and we demonstrated a significant negative relationship between the two strategies, which suggests an avoidance-tolerance trade-off. Negative relationships may result from costs that each strategy incurs or from constraints imposed by physical laws on plant tissues. The existence of such a trade-off has important ecological and evolutionary consequences. It would lead to constraints on the evolution and variation of both strategies, possibly limiting their evolution and may constrain many morphological, anatomical and architectural traits that underlie avoidance and tolerance.


Subject(s)
Adaptation, Physiological , Plants/genetics , Stress, Mechanical , Hydrodynamics , Linear Models , Phylogeny , Plant Development , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Physiological Phenomena , Plant Stems/anatomy & histology , Plant Stems/growth & development , Plant Stems/physiology , Plants/anatomy & histology , Species Specificity
16.
Ann Bot ; 102(6): 989-96, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18854376

ABSTRACT

BACKGROUND AND AIMS: The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. METHODS: The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. KEY RESULTS: For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. CONCLUSIONS: This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy.


Subject(s)
Mentha/growth & development , Mentha/physiology , Potamogetonaceae/growth & development , Potamogetonaceae/physiology , Clone Cells , Plant Stems/growth & development , Quantitative Trait, Heritable , Rheology , Stress, Mechanical
17.
New Phytol ; 177(4): 907-917, 2008.
Article in English | MEDLINE | ID: mdl-18275493

ABSTRACT

Plastic responses of plants exposed to mechanical stress can lead to modified, performance-enhancing, morphologies, sometimes accompanied by costs to reproduction. The capacity to present short-term plastic responses to current stress, the resulting performance (expected lower mechanical forces), and the costs of such responses to reproduction were tested for four aquatic plant species. Two ramets of the same genet were submitted to running vs standing water treatment. Traits describing the morphology, hydrodynamic performance and reproduction (sexual and vegetative) were measured. For one species, plastic responses led to reduced hydrodynamic forces, without apparent costs to reproduction, indicating that the plastic response could be beneficial for plant maintenance in stressful habitats. For two species, plastic responses were not associated with variations in performance and reproduction, possibly because of the low hydrodynamic forces experienced, even for morphologies produced under standing conditions. For one species, plastic responses were associated with a sharp decrease in sexual reproduction, without variations in performance, revealing the negative impact of currents over a short time scale. Species maintenance is linked to the capacity of individuals to tolerate mechanical forces. The contrasting responses to currents may be a key element for predicting community dynamics.


Subject(s)
Plants/anatomy & histology , Plants/metabolism , Water/physiology , Biomechanical Phenomena , Ecosystem , Flowers/physiology , Reproduction/physiology
18.
Ann Bot ; 100(6): 1297-305, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17913725

ABSTRACT

BACKGROUND AND AIMS: Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. METHODS: An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. KEY RESULTS: Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. CONCLUSIONS: These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species.


Subject(s)
Magnoliopsida/anatomy & histology , Magnoliopsida/growth & development , Adaptation, Physiological , Biomass , Magnoliopsida/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/anatomy & histology , Plant Stems/growth & development , Plant Stems/metabolism , Stress, Mechanical , Water/metabolism
19.
Am J Bot ; 93(8): 1090-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-21642174

ABSTRACT

Mechanical stresses from wind, current or wave action can strongly affect plant growth and survival. Survival and distribution of species often depend on the plant's capacity to adapt to such stresses, particularly when amplified by climatic variations. Few studies have dealt with plastic adjustments in response to mechanical stress compared to resource stress. We hypothesized that mechanical stress should favor plastic adjustments that result in increased biomass production in zones protected from the stress and that altered growth patterns should be reversible after mechanical stress removal. Here we measured plastic adjustments in morphological traits and clonal architecture for an aquatic clonal species (Berula erecta) under two contrasting mechanical stresses in the field-standing vs. running water. Reversion of the morphological changes was then assessed using transplants in standing water. In the case of mechanical stress, size reduction, biomass reallocation within clones (higher allocations to clonal growth and to belowground organs), and a more compact growth form (reduced spacer lengths) contributed to reducing the damage risk. The removal of mechanical stress induced compensatory growth, probably linked to the production of low density tissues. However, most patterns of dry mass partitioning induced by current stress were not reversed after stress removal.

20.
J Exp Bot ; 56(412): 777-86, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15642713

ABSTRACT

Sessile organisms often exhibit morphological changes in response to permanent exposure to mechanical stimulation (wind or water movements). The adaptive value of these morphological changes (hydrodynamic performance and consequences on fitness) has not been studied extensively, particularly for higher plants submitted to flow stress. The aim was to determine the adaptive value of morphological patterns observed within two higher aquatic plant species, Berula erecta and Mentha aquatica, growing along a natural flow stress gradient. The hydrodynamic ability of each ramet was investigated through quantitative variables (drag coefficient and E-value). Fitness-related traits based on vegetative growth and clonal multiplication were assessed for each individual. For both species, the drag coefficient and the E-value were explained only to a limited extent by the morphological traits used. B. erecta exhibited a reduction in size and low overall plant drag at higher flow velocities, despite high drag values relative to leaf area, due to a low flexibility. The plants maintained their fitness, at least in part, through biomass reallocation: one tall ramet at low velocity, but shorter individuals with many interconnected stolons when flow velocity increased. For M. aquatica, morphological differences along the velocity gradient did not lead to greater hydrodynamic performance. Plant size increased with increasing velocities, suggesting the indirect effects of current favouring growth in high velocities. The fitness-related traits did not demonstrate lower plant fitness for high velocities. Different developmental constraints linked to plant morphology and trade-offs between major plant functions probably lead to different plant responses to flow stress.


Subject(s)
Adaptation, Physiological , Apiaceae/physiology , Lamiaceae/physiology , Apiaceae/anatomy & histology , Biomechanical Phenomena , Environment , Lamiaceae/anatomy & histology , Rivers , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...