Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(22): 222501, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101385

ABSTRACT

We report on the results obtained with the global CUPID-0 background model, which combines the data collected in the two measurement campaigns for a total exposure of 8.82 kg×yr of ^{82}Se. We identify with improved precision the background sources within the 3 MeV energy region, where neutrinoless double ß decay of ^{82}Se and ^{100}Mo is expected, making more solid the foundations for the background budget of the next-generation CUPID experiment. Relying on the excellent data reconstruction, we measure the two-neutrino double ß-decay half-life of ^{82}Se with unprecedented accuracy: T_{1/2}^{2ν}=[8.69±0.05(stat)_{-0.06}^{+0.09}(syst)]×10^{19} yr.

2.
Appl Radiat Isot ; 194: 110704, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731392

ABSTRACT

Core-collapse Supernovae (SNe) are one of the most energetic events in the Universe, during which almost all the star's binding energy is released in the form of neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse. RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources, by deploying the first ton-scale array of cryogenic detectors made from archaeological lead. Pb offers the highest neutrino interaction cross-section via coherent elastic neutrino-nucleus scattering (CEνNS). Such process will enable RES-NOVA to be equally sensitive to all neutrino flavours. For the first time, we propose the use archaeological Pb as sensitive target material in order to achieve an ultra-low background level in the region of interest (O(1 keV)). All these features make possible the deployment of the first cm-scale neutrino telescope for the investigation of astrophysical sources. In this contribution, we will characterize the radiopurity level and the performance of a small-scale proof-of-principle detector of RES-NOVA, consisting in a PbWO4 crystal made from archaeological-Pb operated as cryogenic detector.

3.
Appl Radiat Isot ; 193: 110681, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36669266

ABSTRACT

Next-generation experiments searching for rare events must satisfy increasingly stringent requirements on the bulk and surface radioactive contamination of their active and structural materials. The measurement of surface contamination is particularly challenging, as no existing technology is capable of separately measuring parts of the 232Th and 238U decay chains that are commonly found to be out of secular equilibrium. We will present the results obtained with a detector prototype consisting of 8 silicon wafers of 150 mm diameter instrumented as bolometers and operated in a low-background dilution refrigerator at the Gran Sasso Underground Laboratory of INFN, Italy. The prototype was characterized by a baseline energy resolution of few keV and a background <100 nBq/cm2 in the full range of  α energies, obtained with simple procedures for cleaning of all employed materials and no specific measures to prevent recontamination. Such performance, together with the modularity of the detector design, demonstrate the possibility to realize an alpha detector capable of separately measuring all alpha emitters of the 232Th and 238U chains, possibly reaching a sensitivity of few nBq/cm2.

4.
Phys Rev Lett ; 129(11): 111801, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154394

ABSTRACT

CUPID-0, an array of Zn^{82}Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers' technology. The first project phase (March 2017-December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, ^{82}Se, to be set. After a six month long detector upgrade, CUPID-0 began its second and last phase (June 2019-February 2020). In this Letter, we describe the search for neutrinoless double beta decay of ^{82}Se with a total exposure (phase I+II) of 8.82 kg yr^{-1} of isotope. We set a limit on the half-life of ^{82}Se to the ground state of ^{82}Kr of T_{1/2}^{0ν}(^{82}Se)>4.6×10^{24} yr (90% credible interval), corresponding to an effective Majorana neutrino mass m_{ßß}<(263-545) meV. We also set the most stringent lower limits on the neutrinoless decays of ^{82}Se to the 0_{1}^{+}, 2_{1}^{+}, and 2_{2}^{+} excited states of ^{82}Kr, finding 1.8×10^{23} yr, 3.0×10^{23} yr, and 3.2×10^{23} yr (90% credible interval) respectively.

5.
Eur Phys J C Part Fields ; 82(3): 248, 2022.
Article in English | MEDLINE | ID: mdl-35399983

ABSTRACT

The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.

6.
Eur Phys J C Part Fields ; 81(8): 722, 2021.
Article in English | MEDLINE | ID: mdl-34720725

ABSTRACT

Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of α - α delayed coincidences in 232 Th and 238 U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the α decay position.

7.
Phys Rev Lett ; 123(3): 032501, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386478

ABSTRACT

CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0νDBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a ^{82}Se exposure of 5.29 kg×yr. In this Letter we present the phase-I results in the search for 0νDBD. We demonstrate that the technology implemented by CUPID-0 allows us to reach the lowest background for calorimetric experiments: (3.5_{-0.9}^{+1.0})×10^{-3} counts/(keV kg yr). Monitoring 3.88×10^{25} ^{82}Se nuclei×yr we reach a 90% credible interval median sensitivity of T_{1/2}^{0ν}>5.0×10^{24} yr and set the most stringent limit on the half-life of ^{82}Se 0νDBD: T_{1/2}^{0ν}>3.5×10^{24} yr (90% credible interval), corresponding to m_{ßß}<(311-638) meV depending on the nuclear matrix element calculations.

8.
Phys Rev Lett ; 123(26): 262501, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951429

ABSTRACT

We report on the measurement of the two-neutrino double-ß decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-ß decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19} yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

9.
PLoS One ; 13(8): e0200910, 2018.
Article in English | MEDLINE | ID: mdl-30133443

ABSTRACT

This paper describes the production and chemical separation of the 163Ho isotope that will be used in several nuclear physics experiments aiming at measuring the neutrino mass as well as the neutron cross section of the 163Ho isotope. For this purpose, several batches of enriched 162Er have been irradiated at the Institut Laue-Langevin high flux reactor to finally produce 6 mg or 100 MBq of the desired 163Ho isotope. A portion of the Er/Ho mixture is then subjected to a sophisticated chemical separation involving ion exchange chromatography to isolate the Ho product from the Er target material. Before irradiation, a thorough analysis of the impurity content was performed and its implication on the produced nuclide inventory will be discussed.


Subject(s)
Holmium/chemistry , Holmium/isolation & purification , Radiochemistry/methods , Isotopes , Neutrons , Nuclear Physics
10.
Phys Rev Lett ; 120(23): 232502, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932707

ABSTRACT

We report the result of the search for neutrinoless double beta decay of ^{82}Se obtained with CUPID-0, the first large array of scintillating Zn^{82}Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr ^{82}Se exposure, and we set the most stringent lower limit on the 0νßß ^{82}Se half-life T_{1/2}^{0ν}>2.4×10^{24} yr (90% credible interval), which corresponds to an effective Majorana neutrino mass m_{ßß}<(376-770) meV depending on the nuclear matrix element calculations. The heat-light readout provides a powerful tool for the rejection of α particles and allows us to suppress the background in the region of interest down to (3.6_{-1.4}^{+1.9})×10^{-3} counts/(keV kg yr), an unprecedented level for this technique.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 201: 207-215, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-29753965

ABSTRACT

Laser-induced fluorescence (LIF), Raman spectroscopy and X-ray (XRF) fluorescence were used to study two frescoes at the S. Alexander catacombs complex, in Rome. LIF analysis has shown the presence of a transparent protective material probably deposited in previous restoration treatments and allowed to clearly distinguish the areas undergoing the current restoration process from the ones which still have to be treated. Raman and XRF analysis allowed to non-destructively characterizing most of the pictorial materials used for the artworks, including calcite (CaCO3), red ochre (Fe2O3), minium (Pb3O4), yellow ochre (α-FeOOH) and others. Therefore, thanks to the complementarity of the above-mentioned techniques, it was possible to obtain a detailed characterization of the studied frescoes. Finally, the whole ensemble of results constituted a valid tool to effectively plan the restoration of the frescoes.

12.
Eur Phys J C Part Fields ; 78(11): 888, 2018.
Article in English | MEDLINE | ID: mdl-30881205

ABSTRACT

The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95 % enriched in 82 Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of 82 Se into the 0 1 + , 2 1 + and 2 2 + excited states of 82 Kr with an exposure of 5.74 kg · yr (2.24 × 10 25  emitters · yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: Γ ( 82 Se → 82 Kr 0 1 + )8.55 × 10 - 24  yr - 1 , Γ ( 82 Se → 82 Kr 2 1 + ) < 6.25 × 10 - 24  yr - 1 , Γ ( 82 Se → 82 Kr 2 2 + )8.25 × 10 - 24  yr - 1 (90 % credible interval).

13.
Eur Phys J C Part Fields ; 78(9): 734, 2018.
Article in English | MEDLINE | ID: mdl-30839752

ABSTRACT

The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by α particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn 82 Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the α background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.

14.
Eur Phys J C Part Fields ; 78(5): 428, 2018.
Article in English | MEDLINE | ID: mdl-30996670

ABSTRACT

The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of 82 Se neutrinoless double-beta decay ( 0 ν ß ß ). CUPID-0 aims at measuring a background index in the region of interest (RoI) for 0 ν ß ß at the level of 10 - 3  counts/(keV kg years), the lowest value ever measured using cryogenic detectors. CUPID-0 operates an array of Zn 82 Se scintillating bolometers coupled with bolometric light detectors, with a state of the art technology for background suppression and thorough protocols and procedures for the detector preparation and construction. In this paper, the different phases of the detector design and construction will be presented, from the material selection (for the absorber production) to the new and innovative detector structure. The successful construction of the detector lead to promising preliminary detector performance which is discussed here.

15.
Eur Phys J C Part Fields ; 76(7): 364, 2016.
Article in English | MEDLINE | ID: mdl-28280442

ABSTRACT

The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in [Formula: see text]Se, the Zn[Formula: see text]Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn[Formula: see text]Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

16.
Eur Phys J C Part Fields ; 75(3): 112, 2015.
Article in English | MEDLINE | ID: mdl-25995704

ABSTRACT

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of [Formula: see text]Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted [Formula: see text]Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

17.
J Low Temp Phys ; 1842015 Dec 29.
Article in English | MEDLINE | ID: mdl-33087985

ABSTRACT

For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to be a leading source of experimental error. Although Wiener filtering can be used to recognize pile-up, it suffers errors due to pulse-shape variation from detector nonlinearity, readout dependence on sub-sample arrival times, and stability issues from the ill-posed deconvolution problem of recovering Dirac delta-functions from smooth data. Due to these factors, we have developed a processing method that exploits singular value decomposition to (1) separate single-pulse records from piled-up records in training data and (2) construct a model of single-pulse records that accounts for varying pulse shape with amplitude, arrival time, and baseline level, suitable for detecting nearly-coincident events. We show that the resulting processing advances can reduce the required performance specifications of the detectors and readout system or, equivalently, enable larger sensor arrays and better constraints on the neutrino mass.

18.
Int J Sports Med ; 28(10): 848-52, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17497574

ABSTRACT

This study was designed to evaluate physiological and psychological stress parameters in 2 professional trained scuba divers, using a unique physiopathologic model, offered by the guinness 240 hours scuba dive. Two scuba dive masters have spent 240 hours at 6 - 8 meters depth (26.4 ft) in Ponza Island water (Italy). Blood samples were collected daily in the underwater bell; samples were carried out of water in waterproof bags. Breath samples were collected, measuring ethylene release. Psychological assessment was performed using the State and Trait Anxiety Inventory and the Zung self-rating depression scale. In the studied subjects, cortisol and prolactin showed physiological pulsatile secretion. Breath ethylene didn't exceed normal values. At the start of the study, no subjects showed high levels of state anxiety, trait anxiety and current depression. Psychometric scales scores remained steady during the diving period and no subjects showed anxiety and/or depression and/or panic symptoms during the time of observation. The present study shows that, although the long-time diving, well trained professional divers did not develop anxiety and/or depression. No subject discontinued the diving due to occurred psychological disorders or systemic events. The present report shows that the long-term diving permanence is possible, at least in well trained scuba divers.


Subject(s)
Diving/physiology , Diving/psychology , Neurosecretory Systems/metabolism , Adult , Breath Tests , Environmental Exposure , Female , Humans , Italy , Male , Psychometrics , Self-Assessment , Spectrum Analysis , Sports , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...