Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36840247

ABSTRACT

Essential oil of Nepeta racemosa Lam. was extracted and characterized to determine its antimicrobial activity and potential use in applications. The essential oil was loaded on polyvinyl alcohol-pullulan films and gels and characterized by optical microscopy, scanning electron microscopy, and UV-Vis spectroscopy before having its antimicrobial capacities assessed. The essential oil extracted from Nepeta racemosa Lam. was characterized using gas chromatography coupled with mass spectroscopy, which indicated that the most abundant component was nepetalic acid (55.5%), followed by eucalyptol (10.7%) and other compounds with concentrations of about 5% or less. The essential oil, as well as the loaded films and gels, exhibited good antibacterial activity on both gram-positive and gram-negative strains, with growth inhibition zones larger in some cases than for gentamicin, indicating excellent premises for using these essential-oil-loaded materials for applications in the food industry or biomedicine.

2.
Plants (Basel) ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771667

ABSTRACT

In this work, the effects of salt stress on Nepeta racemosa Lam. were studied to analyze the possibility of using it as a potential culture for salinity-affected soils. A total of nine concentrations of salts-NaCl (18, 39, and 60 mg/100 g soil), Na2SO4 (50, 85, and 120 mg/100 g soil), and a mixture (9 g NaCl + 25 g Na2SO4, 19 g NaCl + 43 g Na2SO4, and 30 g NaCl + 60 g Na2SO4/100 g soil)-simulated real salinity conditions. Environmental electron microscopy offered information about the size and distribution of glandular trichomes, which are very important structures that contain bioactive compounds. The chlorophyll pigments, polyphenols, flavonoids, and antioxidant activity were determined based on spectrophotometric protocols. The results have shown a different impact of salinity depending on the salt type, with an increase in bioactive compound concentrations in some cases. The highest polyphenol concentrations were obtained for Na2SO4 variants (47.05 and 46.48 mg GA/g dw for the highest salt concentration in the first and second year, respectively), while the highest flavonoid content was found for the salt mixtures (42.77 and 39.89 mg QE/g dw for the highest concentrations of salt in the first and, respectively, the second year), approximately 100% higher than control. From the Pearson analysis, strong correlations were found between chlorophyll pigments (up to 0.93), antioxidant activity and yield for the first harvest (up to 0.38), and antioxidant activity and flavonoid content for the second harvest (up to 0.95). The results indicate the possibility of growing the studied plants in salt-stress soils, obtaining higher concentrations of bioactive compounds.

3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835308

ABSTRACT

The study in this paper presents a new material that was produced as a thin film by the Pulsed Laser Deposition technique (PLD) using a 532 nm wavelength and 150 mJ/pulse laser beam on the hemp stalk as target. The analyses performed by spectroscopic techniques (Fourier Transform Infrared Spectroscopy-FTIR, Laser-Induced Fluorescence Spectroscopy-LIF, Scanning Electron Microscopy coupled with Energy Dispersive X-ray-SEM-EDX, Atomic Force Microscopy-AFM and optical microscope) evidenced that a biocomposite consisting of lignin, cellulose, hemicellulose, waxes, sugars and phenolyc acids p-coumaric and ferulic, similar to the hemp stalk target was obtained. Nanostructures and aggregated nanostructures of 100 nm to 1.5 µm size were evidenced. Good mechanical strength and its adherence to the substrate were also noticed. It was noticed that the content in calcium and magnesium increased compared to that of the target from 1.5% to 2.2% and from 0.2% to 1.2%, respectively. The COMSOL numerical simulation provided information on the thermal conditions that explain phenomena and processes during laser ablation such as C-C pyrolisis and enhanced deposition of calcium in the lignin polymer matrix. The good gas and water sorption properties due to the free OH groups and to the microporous structure of the new biocomposite components recommends it for studies for functional applications in medicine for drug delivery devices, filters in dialysis and for gas and liquid sensors. Functional applications in solar cells windows are also possible due to the conjugated structures of the contained polymers.


Subject(s)
Cannabis , Laser Therapy , Lignin , Calcium , Renal Dialysis , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...