Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 13(2): 766-770, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28352364

ABSTRACT

It has been demonstrated that 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide (m-3M3FBS) activates phospholipase C (PLC) and stimulates apoptosis in smooth muscle cells, which may increase vascular reactivity. The primary aim of the present study was to evaluate the physiological effects of the direct stimulation of PLC by m-3M3FBS on vascular smooth muscle reactivity in arteries pre-treated with lipopolysaccharides (LPS) as a model of septic shock. Experiments were performed on isolated and perfused tail arteries of Wistar rats. The contraction force in the model was measured by assessing increases in perfusion pressure at a constant flow. Parameters describing the concentration-response curves (CRCs) obtained for phenylephrine and arginine-vasopressin in the presence of LPS confirmed a decrease in vessels reactivity. In comparison with the controls, m-3M3FBS treatment caused a significant increase in LPS-untreated as well as pre-treated arteries. Furthermore, in the presence of m-3M3FBS, calcium influx from intra- as well as extracellular calcium stores was significantly higher for LPS-untreated and pre-treated arteries. The results of the present study suggested that m-3M3FBS significantly increased the reactivity of vascular smooth muscle cells pre-treated with LPS by increasing the calcium influx from intra- and extracellular calcium stores. Further studies investigating this mechanism are required to evaluate whether this pathway may be a potential therapeutic strategy to treat sepsis.

2.
Biomed Rep ; 4(1): 117-121, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26870347

ABSTRACT

2,4,6-Trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide (m-3M3FBS) activates phospholipase C and stimulates apoptosis; however, in smooth muscle cells it may increase the perfusion pressure. The main aim of the present study was to evaluate the physiological effect of direct stimulation of phospholipase C on vascular smooth muscle reactivity using three contraction models. Experiments were performed on the isolated and perfused tail artery of Wistar rats. The contraction force in the present model was measured by an increased level of perfusion pressure with a constant flow. Concentration-response curves (CRCs) obtained for phenylephrine, arg-vasopressin, mastoparan-7 and Bay K8644 presented a sigmoidal association. In comparison to the control curves, CRCs in the presence of m-3M3FBS were significantly shifted to the left except for Bay K8644. Analyses of calcium influx suggest that in the presence of m-3M3FBS the calcium influx from intra- and extracellular calcium stores was significantly higher. The results of the present experiments suggest that m-3M3FBS significantly increases the reactivity of vascular smooth muscle stimulated with metabotropic receptors or G-protein by an increase in calcium influx from intra- and extracellular calcium stores. The current knowledge regarding the apoptotic pathway shows the significance of calcium ions involved in this process, thus, m-3M3FBS may induce apoptosis by an increase of cytoplasmic calcium concentration; however, simultaneously, the use of this mechanism in therapy must be preceded by a molecular modification that eliminates a possible vasoconstriction effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...