Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 35(49): 16130-16135, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31710498

ABSTRACT

Desiccation of a colloidal layer produces crack patterns because of stress arising out of solvent evaporation. Associated with it is the rearrangement of particles, while adhesion to the substrate resists such movements. The nature of solvent, which is often overlooked, plays a key role in the process as it dictates evaporation and wetting properties of the colloidal film. Herein, we study the crack formation process by using a mixture of solvents, water, and isopropyl alcohol (IPA). Among the various ratios, a water/IPA mixture (15:85 by volume) close to the azeotropic composition possesses unusual evaporation and wetting properties, leading to narrower cracks with widths down to ∼162 nm, uncommon among the known crackle patterns. The dense and narrow crack patterns have been used as sacrificial templates to obtain metal meshes on transparent substrates for optoelectronic applications.

2.
J Phys Chem Lett ; 6(21): 4437-43, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26499379

ABSTRACT

The extraordinary properties of graphene are truly observable when it is suspended, being free from any substrate influence. Here, a new type of multilayer graphene is reported wherein each layer is turbostratically decoupled, resembling suspended graphene in nature, while maintaining high degree of 2D crystallinity. Such defect-free graphene multilayers have been made over large areas by Joule heating of a Ni foil coated with a solid hydrocarbon. Raman spectra measured on thick flakes of turbostratically single layer graphene (T-SLG) (100-250 nm) have shown characteristics similar to suspended graphene with very narrow 2D bands (∼16 cm(-1)) and I2D/IG ratios up to 7.4, importantly with no D band intensity. Electron diffraction patterns showed sets of diffraction spots spread out with definite angular spacings, reminiscent of the angular deviations from the AB packing which are responsible for keeping the layers decoupled. The d-spacing derived from X-ray diffraction was larger (by ∼0.04 Å) compared to that in graphite. Accordingly, the c-axis resistance values were three orders higher, suggesting that the layers are indeed electronically decoupled. The high 2D crystallinity observed along with the decoupled nature should accredit the observed graphene species as a close cousin of suspended graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...