Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1655(1-3): 205-16, 2004 Apr 12.
Article in English | MEDLINE | ID: mdl-15100033

ABSTRACT

In PSII, there are two redox-active tyrosines, D and Z, with different midpoint potentials and different reduction kinetics. The factors responsible for these functional differences have not yet been elucidated. Recent model compound studies of tyrosinate and of tyrosine-containing dipeptides have demonstrated that perturbations of the amino and amide/imide group occur when the tyrosyl aromatic ring is oxidized [J. Am. Chem. Soc. 124 (2002) 5496]. Accompanying density functional calculations suggested that this perturbation is due to spin density delocalization from the aromatic ring onto the amino nitrogen. The implication of this finding is that spin density delocalization may occur in redox-active, tyrosine-containing enzymes, like Photosystem II. In this paper, we review the supporting evidence for the hypothesis that tyrosyl radical spin density delocalizes into the peptide bond in a conformationally sensitive, sequence-dependent manner. Our experimental measurements on tyrosyl radicals in dipeptides have suggested that the magnitude of the putative spin migration may be sequence-dependent. Vibrational spectroscopic studies on the tyrosyl radicals in Photosystem II, which are consistent with spin migration, are reviewed. Migration of the unpaired spin may provide a mechanism for control of the direction and possibly the rate of electron transfer.


Subject(s)
Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Electron Spin Resonance Spectroscopy , Electron Transport , Free Radicals/chemistry , Kinetics , Models, Molecular , Oxidation-Reduction , Plastoquinone/chemistry , Spectroscopy, Fourier Transform Infrared
2.
J Am Chem Soc ; 125(25): 7536-8, 2003 Jun 25.
Article in English | MEDLINE | ID: mdl-12812492

ABSTRACT

Photosystem II (PSII) catalyzes the light-driven oxidation of water and reduction of plastoquinone. In PSII, redox-active tyrosine Z conducts electrons between the primary chlorophyll donor and the manganese cluster, which is the catalytic site. In this report, difference FT-IR spectroscopy is used to show that oxidation of redox-active tyrosine Z causes perturbations of the peptide bond. PSII data were acquired on control samples, as well as samples in which tyrosine was 2H4 (ring)-labeled. Comparison to model compound data, acquired both from tyrosinate and its 2H4 isotopomer, was performed. The PSII FT-IR spectrum exhibited vibrational bands that are assignable to imide and amide vibrational modes. In previous work, we have shown that oxidation of tyrosinate perturbs the terminal amino group of tyrosinate (Ayala, I.; Range, K.; York, D.; Barry, B. A. J. Am. Chem. Soc. 2002, 124, 5496-5505). Density functional calculations on tyrosinate supported the interpretation that the perturbation is due to spin delocalization onto the amino group. In tyrosine-containing dipeptides, perturbations of the peptide bond were observed. Therefore, the imide and amide perturbations observed here are attributed to spin delocalization into the peptide bond in PSII. Migration of the electron hole in PSII may be consistent with peptide bond involvement in tyrosyl radical-based electron-transfer reactions.


Subject(s)
Peptides/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Tyrosine/chemistry , Amides/chemistry , Amides/metabolism , Imides/chemistry , Imides/metabolism , Oxidation-Reduction , Peptides/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Spectroscopy, Fourier Transform Infrared , Tyrosine/metabolism
3.
Biochemistry ; 41(38): 11456-65, 2002 Sep 24.
Article in English | MEDLINE | ID: mdl-12234188

ABSTRACT

In photosynthesis, photosystem II (PSII) conducts the light-driven oxidation of water to oxygen. Tyrosine Z is Tyr 161 of the D1 polypeptide; Z acts as an intermediary electron carrier in water oxidation. In this report, EPR spectroscopy was used to study the effect of His 190 and Glu 189 on Z* yield and reduction kinetics. Neither mutation has a significant impact on the EPR line shape of Z*. At room temperature and pH 7.5, the E189Q-D1 mutation has a single turnover Z* yield that is 84% compared to wild-type. The H190Q-D1 mutation decreases the Z* yield at room temperature by a factor of 2.6 but has a more modest effect (factor of 1.6) at -10 degrees C. The temperature dependence is shown to be primarily reversible. Neither mutation has a dramatic effect on Z* decay kinetics. The Z* minus Z FT-IR spectrum, recorded at pH 7.5 on H190Q, reveals perturbations, including an increased spectral contribution from a PSII chlorophyll. The Z* minus Z FT-IR spectrum, recorded at pH 7.5 on E189Q, shows perturbations, including a decreased contribution from the carboxylate side chain of a glutamate or aspartate. Temperature-dependent changes in H190Q-D1 and E189Q-D1 Z. yield are attributed to a reversible conformational change, which alters the electron-transfer rate from Z to P(680)(+). On the basis of these results, we conclude that H190 and E189 play a role in the structural stabilization of PSII. We postulate that some or all of the phenotypic changes observed in H190Q and E189Q mutants may be caused by structural alterations in PSII.


Subject(s)
Cyanobacteria/metabolism , Glutamine , Histidine , Photosynthetic Reaction Center Complex Proteins/chemistry , Amino Acid Substitution , Electron Spin Resonance Spectroscopy , Kinetics , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...