Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38935210

ABSTRACT

Sunscreens are used for the protection of human skin against the harmful effects of solar UV radiation. Due to the low thickness of sunscreen films typically applied to the skin, it can be challenging to achieve the strong absorbance needed for good UV-protection, and most efficient sunscreen compositions are desirable. The presence of scattering particles can increase the efficacy of dissolved UV-absorbers in the oil or water phases of the formulation. As many sunscreens contain UV-absorbing particles, it is of interest how much the scattering effect of such materials contribute to the protection of the respective sunscreen. The currently available software programs for simulating sunscreen performance are based on a Beer-Lambert law approach and do not take into account such scattering effects of particles. However, Monte Carlo simulations of the UV-light transport through sunscreen films are capable to take scattering from particles into consideration. Using Monte Carlo simulations, this work shows that the efficacy of absorbance is indeed increased in the presence of scattering particles. However, this is of limited significance when the particles are UV-absorbers themselves.

2.
NanoImpact ; 172020.
Article in English | MEDLINE | ID: mdl-33029568

ABSTRACT

Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.

SELECTION OF CITATIONS
SEARCH DETAIL
...