Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976131

ABSTRACT

Aging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation. The effects of renal nerve ablation and NCC antagonism were assessed in hypertensive male rats. We observed sex-dependent impaired renal sodium handling (24 h sodium balance (meq), male 3-month 0.36 ± 0.1 vs. 16-month 0.84 ± 0.2; sodium load excreted during 5% bodyweight isotonic saline volume expansion (%) male 3-month 77 ± 5 vs. 16-month 22 ± 8), hypertension (MAP (mmHg) male 3-month 123 ± 4 vs. 16-month 148 ± 6), and the salt sensitivity of BP in aged male, but not female, rats. Attenuated sympathoinhibitory afferent renal nerve (ARN) responses contributed to increased sympathetic tone and hypertension in male rats. Increased sympathetic tone contributes to renal sodium retention, in part through increased NCC activity via a dysfunctional with-no-lysine kinase-(WNK) STE20/SPS1-related proline/alanine-rich kinase signaling pathway, to drive hypertension and the salt sensitivity of BP in aged male rats. NCC antagonism and renal nerve ablation, which reduced WNK dysfunction and decreased NCC activity, attenuated age-dependent hypertension in male Sprague-Dawley rats. The contribution of an impaired sympathoinhibitory ARN reflex to sex- and age-dependent hypertension in an NCC-dependent manner, via an impaired WNK1/WNK4 dynamic, suggests this pathway as a mechanism-based target for the treatment of age-dependent hypertension.

2.
Article in English | MEDLINE | ID: mdl-38813592

ABSTRACT

Hypertension affects approximately 1 in 2 US adults and sex plays an important role in the pathogenesis of hypertension.​ The sodium chloride cotransporter (NCC), regulated by a kinase network including with-no-lysine kinases (WNK) 1 and WNK4, STE20/SPS1-related proline alanine rich kinase (SPAK), and oxidative stress response 1 (OxSR1) is critical to sodium reabsorption and blood pressure regulation. Dietary salt differentially modulates the NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In these studies, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague Dawley, Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt resistant SD and DSR rats a high salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males these changes were associated with no change in WNK1 expression and a decrease in WNK4 levels and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast in females decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.

3.
Genetics ; 226(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37967370

ABSTRACT

The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae  Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , mRNA Cleavage and Polyadenylation Factors , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , Mutation , RNA Polymerase II/metabolism , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
4.
Hypertension ; 76(5): 1461-1469, 2020 11.
Article in English | MEDLINE | ID: mdl-32981364

ABSTRACT

Increased sympathoexcitation and renal sodium retention during high salt intake are hallmarks of the salt sensitivity of blood pressure. The mechanism(s) by which excessive sympathetic nervous system release of norepinephrine influences renal sodium reabsorption is unclear. However, studies demonstrate that norepinephrine can stimulate the activity of the NCC (sodium chloride cotransporter) and promote the development of SSH (salt-sensitive hypertension). The adrenergic signaling pathways governing NCC activity remain a significant source of controversy with opposing studies suggesting a central role of upstream α1- and ß-adrenoceptors in the canonical regulatory pathway involving WNKs (with-no-lysine kinases), SPAK (STE20/SPS1-related proline alanine-rich kinase), and OxSR1 (oxidative stress response 1). In our previous study, α1-adrenoceptor antagonism in norepinephrine-infused male Sprague-Dawley rats prevented the development of norepinephrine-evoked SSH in part by suppressing NCC activity and expression. In these studies, we used selective adrenoceptor antagonism in male Dahl salt-sensitive rats to test the hypothesis that norepinephrine-mediated activation of the NCC in Dahl SSH occurs via an α1-adrenoceptor dependent pathway. A high-salt diet evoked significant increases in NCC activity, expression, and phosphorylation in Dahl salt-sensitive rats that developed SSH. Increases were associated with a dysfunctional WNK1/4 dynamic and a failure to suppress SPAK/OxSR1 activity. α1-adrenoceptor antagonism initiated before high-salt intake or following the establishment of SSH attenuated blood pressure in part by suppressing NCC activity, expression, and phosphorylation. Collectively, our findings support the existence of a norepinephrine-activated α1-adrenoceptor gated pathway that relies on WNK/SPAK/OxSR1 signaling to regulate NCC activity in SSH.


Subject(s)
Gene Expression Regulation , Hypertension/metabolism , Sodium Chloride Symporters/metabolism , Sympathetic Nervous System/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Hypertension/genetics , Hypertension/physiopathology , Male , Phosphorylation/drug effects , Prazosin/analogs & derivatives , Prazosin/pharmacology , Propranolol/pharmacology , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Sodium Chloride Symporters/genetics , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology
5.
Exp Physiol ; 104(12): 1892-1910, 2019 12.
Article in English | MEDLINE | ID: mdl-31631436

ABSTRACT

NEW FINDINGS: • What is the central question of this study? We hypothesized that central inflammatory processes that involve activation of microglia and astrocytes contribute to the development of Gαi2 protein-dependent, salt-sensitive hypertension. • What is the main finding and its importance? The main finding is that PVN-specific inflammatory processes, driven by microglial activation, appear to be linked to the development of Gαi2 protein-dependent, salt-sensitive hypertension in Sprague-Dawley rats. This finding might reveal new mechanistic targets in the treatment of hypertension. ABSTRACT: The central mechanisms underlying salt-sensitive hypertension, a significant public health issue, remain to be established. Researchers in our laboratory have reported that hypothalamic paraventricular nucleus (PVN) Gαi2 proteins mediate the sympathoinhibitory and normotensive responses to high sodium intake in salt-resistant rats. Given the recent evidence of central inflammation in animal models of hypertension, we hypothesized that PVN inflammation contributes to Gαi2 protein-dependent, salt-sensitive hypertension. Male Sprague-Dawley rats received chronic intracerebroventricular infusions of a targeted Gαi2 or control scrambled oligodeoxynucleotide (ODN) and were maintained for 7 days on a normal-salt (NS; 0.6% NaCl) or high-salt (HS; 4% NaCl) diet; in subgroups on HS, intracerebroventricular minocycline (microglial inhibitor) was co-infused with ODNs. Radiotelemetry was used in subgroups of rats to measure mean arterial pressure (MAP) chronically. In a separate group of rats, plasma noradrenaline, plasma renin activity, urinary angiotensinogen and mRNA levels of the PVN pro-inflammatory cytokines TNFα, IL-1ß and IL-6 and the anti-inflammatory cytokine IL-10 were assessed. In additional groups, immunohistochemistry was performed for markers of PVN and subfornical organ microglial activation and cytokine levels and PVN astrocyte activation. High salt intake evoked salt-sensitive hypertension, increased plasma noradrenaline, PVN pro-inflammatory cytokine mRNA upregulation, anti-inflammatory cytokine mRNA downregulation and PVN-specific microglial activation in rats receiving a targeted Gαi2 but not scrambled ODN. Minocycline co-infusion significantly attenuated the increase in MAP and abolished the increase in plasma noradrenaline and inflammation in Gαi2 ODN-infused animals on HS. Our data suggest that central Gαi2 protein prevents microglial-mediated PVN inflammation and the development of salt-sensitive hypertension.


Subject(s)
Hypertension/metabolism , Intracellular Signaling Peptides and Proteins/administration & dosage , Microglia/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Sodium Chloride, Dietary/administration & dosage , Animals , Hypertension/chemically induced , Hypertension/pathology , Infusions, Intraventricular , Male , Microglia/drug effects , Oligodeoxyribonucleotides/administration & dosage , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/pathology , Rats , Rats, Sprague-Dawley
6.
Am J Physiol Renal Physiol ; 317(6): F1623-F1636, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31608673

ABSTRACT

Salt sensitivity of blood pressure is characterized by inappropriate sympathoexcitation and renal Na+ reabsorption during high salt intake. In salt-resistant animal models, exogenous norepinephrine (NE) infusion promotes salt-sensitive hypertension and prevents dietary Na+-evoked suppression of the Na+-Cl- cotransporter (NCC). Studies of the adrenergic signaling pathways that modulate NCC activity during NE infusion have yielded conflicting results implicating α1- and/or ß-adrenoceptors and a downstream kinase network that phosphorylates and activates NCC, including with no lysine kinases (WNKs), STE20/SPS1-related proline-alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1). In the present study, we used selective adrenoceptor antagonism in NE-infused male Sprague-Dawley rats to investigate the differential roles of α1- and ß-adrenoceptors in sympathetically mediated NCC regulation. NE infusion evoked salt-sensitive hypertension and prevented dietary Na+-evoked suppression of NCC mRNA, protein expression, phosphorylation, and in vivo activity. Impaired NCC suppression during high salt intake in NE-infused rats was paralleled by impaired suppression of WNK1 and OxSR1 expression and SPAK/OxSR1 phosphorylation and a failure to increase WNK4 expression. Antagonism of α1-adrenoceptors before high salt intake or after the establishment of salt-sensitive hypertension restored dietary Na+-evoked suppression of NCC, resulted in downregulation of WNK4, SPAK, and OxSR1, and abolished the salt-sensitive component of hypertension. In contrast, ß-adrenoceptor antagonism attenuated NE-evoked hypertension independently of dietary Na+ intake and did not restore high salt-evoked suppression of NCC. These findings suggest that a selective, reversible, α1-adenoceptor-gated WNK/SPAK/OxSR1 NE-activated signaling pathway prevents dietary Na+-evoked NCC suppression, promoting the development and maintenance of salt-sensitive hypertension.


Subject(s)
Hypertension/metabolism , Norepinephrine , Solute Carrier Family 12, Member 3/metabolism , Sympathetic Nervous System/physiopathology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Hypertension/chemically induced , Hypertension/physiopathology , Kidney/drug effects , Kidney/metabolism , Male , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, beta/metabolism , Sodium, Dietary/pharmacology
7.
Cell Rep ; 20(10): 2490-2500, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28877480

ABSTRACT

Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich's ataxia. Whereas the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans modifiers that can impact the likelihood of expansions and disease progression. Detection of these modifiers may lead to understanding and treating repeat expansion diseases. Here, we describe a method for the rapid, genome-wide identification of trans modifiers for repeat expansion in a yeast experimental system. Using this method, we found that missense mutations in the endoribonuclease subunit (Ysh1) of the mRNA cleavage and polyadenylation complex dramatically increase the rate of (GAA)n repeat expansions but only when they are actively transcribed. These expansions correlate with slower transcription elongation caused by the ysh1 mutation. These results reveal an interplay between RNA processing and repeat-mediated genome instability, confirming the validity of our approach.


Subject(s)
Friedreich Ataxia/metabolism , RNA, Messenger/genetics , DNA Replication/genetics , DNA Replication/physiology , Friedreich Ataxia/genetics , Genomic Instability/genetics , Genomic Instability/physiology , Humans , Mutation/genetics , Point Mutation/genetics , Polyadenylation/genetics , Polyadenylation/physiology , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeat Expansion/physiology , Trinucleotide Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...