Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Behav Ecol ; 34(5): 729-740, 2023.
Article in English | MEDLINE | ID: mdl-37744166

ABSTRACT

Parent-offspring conflict over food allocation can be modeled using two theoretical frameworks: passive (scramble competition) and active choice (signaling) resolution models. However, differentiating between these models empirically can be challenging. One possibility involves investigating details of decision-making by feeding parents. Different nestling traits, related to competitive prowess or signaling cryptic condition, may interact additively or non-additively as predictors of parental feeding responses. To explore this, we experimentally created even-sized, small broods of pied flycatchers and manipulated nestling cryptic quality, independently of size, by vitamin E supplementation. We explored how interactions between nestling cryptic condition, size, signals, and spatial location predicted food allocation and prey-testing by parents. Parents created the potential for spatial scramble competition between nestlings by feeding from and to a narrow range of nest locations. Heavier supplemented nestlings grew faster and were more likely to access profitable nest locations. However, the most profitable locations were not more contested, and nestling turnover did not vary in relation to spatial predictability or food supply. Postural begging was only predicted by nestling hunger and body mass, but parents did not favor heavier nestlings. This suggests that size-mediated and spatial competition in experimental broods was mild. Pied flycatcher fathers allocated food in response to nestling position and begging order, while mothers seemingly followed an active choice mechanism involving assessment of more complex traits, including postural intensity interacting with order, position, and treatment, and perhaps other stimuli when performing prey-testings. Differences in time constraints may underlie sex differences in food allocation rules.

2.
Parasitol Res ; 122(5): 1139-1149, 2023 May.
Article in English | MEDLINE | ID: mdl-36933067

ABSTRACT

The knowledge of the diversity and geographic distribution of parasite species is the first step towards understanding processes of global epidemiology and species conservation. Despite recent increases in research on haemosporidian and haemogregarine parasites of reptiles and amphibians, we still know little about their diversity and parasite-host interactions, especially in the Iberian Peninsula, where a few studies have been conducted. In this study, the haemosporidian and haemogregarine diversity and phylogenetic relationships of the parasites in southwestern Iberian amphibians and reptiles were assessed using PCR approaches on blood samples of 145 individuals from five amphibian and 13 reptile species. The amphibians did not present any of both groups of parasites studied. Regarding reptiles, five Hepatozoon, one Haemogregarina, and one Haemocystidum haplotypes were found infecting four different species, revealing new host records for these parasites. Among them, we found one new Haemocystidium haplotype and three new and a previously reported Hepatozoon haplotype from a north African snake. The latter finding suggests that some Hepatozoon parasites may not be host-specific and have large geographic ranges even crossing geographical barriers. These results increased the knowledge about the geographic distribution and the number of known host species of some reptile apicomplexan parasites, highlighting the great unexplored diversity of them in this region.


Subject(s)
Eucoccidiida , Reptiles , Humans , Animals , Phylogeny , Reptiles/parasitology , Amphibians , Snakes/parasitology , Eucoccidiida/genetics
3.
ACS Appl Mater Interfaces ; 14(42): 48179-48193, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36251059

ABSTRACT

The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.


Subject(s)
Fibronectins , Integrins , Integrins/metabolism , Cell Adhesion , Fibronectins/pharmacology , Fibronectins/metabolism , Vitronectin , Oligopeptides/pharmacology , Polyethylene Glycols , Surface-Active Agents , Sulfhydryl Compounds , Gold/pharmacology
4.
J Med Chem ; 65(1): 616-632, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34982555

ABSTRACT

A G protein-coupled receptor heteromer that fulfills the established criteria for its existence in vivo is the complex between adenosine A2A (A2AR) and dopamine D2 (D2R) receptors. Here, we have designed and synthesized heterobivalent ligands for the A2AR-D2R heteromer with various spacer lengths. The indispensable simultaneous binding of these ligands to the two different orthosteric sites of the heteromer has been evaluated by radioligand competition-binding assays in the absence and presence of specific peptides that disrupt the formation of the heteromer, label-free dynamic mass redistribution assays in living cells, and molecular dynamic simulations. This combination of techniques has permitted us to identify compound 26 [KDB1 (A2AR) = 2.1 nM, KDB1 (D2R) = 0.13 nM], with a spacer length of 43-atoms, as a true bivalent ligand that simultaneously binds to the two different orthosteric sites. Moreover, bioluminescence resonance energy transfer experiments indicate that 26 favors the stabilization of the A2AR-D2R heteromer.


Subject(s)
Receptor, Adenosine A2A/drug effects , Receptors, Dopamine D2/drug effects , Animals , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Drug Design , Humans , Ligands , Molecular Dynamics Simulation , Radioligand Assay
5.
J Supercrit Fluids ; 173: 105204, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34219919

ABSTRACT

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients. In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability. Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease. Through a risk analysis and a Design of Experiments (DoE), we obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

6.
ACS Appl Mater Interfaces ; 13(7): 7825-7838, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33583172

ABSTRACT

Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems-quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.


Subject(s)
Enzyme Replacement Therapy , Fabry Disease/therapy , Nanostructures/chemistry , alpha-Galactosidase/metabolism , Fabry Disease/enzymology , Humans , Oligopeptides/chemistry , Particle Size , Surface Properties , Surface-Active Agents/chemistry
7.
Pharmaceutics ; 12(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823903

ABSTRACT

Finding alternatives to gadolinium (Gd)-based contrast agents (CA) with the same or even better paramagnetic properties is crucial to overcome their established toxicity. Herein we describe the synthesis and characterization of entirely organic metal-free paramagnetic macromolecules based on biocompatible oligoethylene glycol dendrimers fully functionalized with 5 and 20 organic radicals (OEG Gn-PROXYL (n = 0, 1) radical dendrimers) with the aim to be used as magnetic resonance imaging (MRI) contrast agents. Conferring high water solubility on such systems is often a concern, especially in large generation dendrimers. Our approach to overcome such an issue in this study is by synthesizing dendrimers with highly water-soluble branches themselves. In this work, we show that the highly water-soluble OEG Gn-PROXYL (n = 0, 1) radical dendrimers obtained showed properties that convert them in good candidates to be studied as contrast agents for MRI applications like diagnosis and follow-up of infectious diseases, among others. Importantly, with the first generation radical dendrimer, a similar r1 relaxivity value (3.4 mM-1s-1) in comparison to gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) used in clinics (3.2 mM-1s-1, r.t. 7T) has been obtained, and it has been shown to not be cytotoxic, avoiding the toxicity risks associated with the unwanted accumulation of Gd in the body.

8.
ACS Omega ; 5(10): 5508-5519, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32201843

ABSTRACT

A method for conjugating cholesterol to peptide ligands through non-disperse polyethylene glycol (ND-PEG) through a non-hydrolysable linkage is described. The iterative addition of tetraethylene glycol macrocyclic sulfate to cholesterol (Chol) renders a family of highly pure well-defined Chol-PEG compounds with different PEG lengths from 4 up to 20 ethylene oxide units, stably linked through an ether bond. The conjugation of these Chol-PEG compounds to the cyclic (RGDfK) peptide though Lys5 side chains generates different lengths of Chol-PEG-RGD conjugates that retain the oligomer purity of the precursors, as analysis by HRMS and NMR has shown. Other derivatives were synthesized with similar results, such as Chol-PEG-OCH3 and Chol-PEG conjugated to glutathione and Tf1 peptides through maleimide-thiol chemoselective ligation. This method allows the systematic synthesis of highly pure uniform stable Chol-PEGs, circumventing the use of activation groups on each elongation step and thus reducing the number of synthesis steps.

9.
ACS Appl Mater Interfaces ; 12(5): 5381-5388, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31840972

ABSTRACT

Five peptide ligands of four different cell surface receptors (nucleolin, CXCR1, CMKLR1, and CD44v6) have been evaluated as targeting moieties for triple-negative human breast cancers. Among them, the peptide F3, derived from phage display, promotes the fast and efficient internalization of a genetically fused green fluorescent protein (GFP) inside MDA-MB-231 cancer stem cells in a specific receptor-dependent fashion. The further engineering of this protein into the modular construct F3-RK-GFP-H6 and the subsequent construct F3-RK-PE24-H6 resulted in self-assembling polypeptides that organize as discrete and regular nanoparticles. These materials, 15-20 nm in size, show enhanced nucleolin-dependent cell penetrability. We show that the F3-RK-PE24-H6, based on the Pseudomonas aeruginosa exotoxin A (PE24) as a core functional domain, is highly cytotoxic over target cells. The combination of F3, the cationic peptide (RK)n, and the toxin domain PE24 in such unusual presentation appears as a promising approach to cell-targeted drug carriers in breast cancers and addresses selective drug delivery in otherwise difficult-to-treat triple-negative breast cancers.


Subject(s)
Drug Carriers/chemistry , Nanostructures/chemistry , Peptides/chemistry , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Bacterial Toxins/chemistry , Bacterial Toxins/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Exotoxins/chemistry , Exotoxins/pharmacology , Female , Humans , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Peptides/metabolism , Peptides/pharmacology , Pseudomonas aeruginosa/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Virulence Factors/chemistry , Virulence Factors/pharmacology , Pseudomonas aeruginosa Exotoxin A
10.
Mol Pharm ; 16(6): 2661-2674, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31009225

ABSTRACT

Over the last decades, multidrug-resistant bacteria have emerged and spread, increasing the number of bacteria, against which commonly used antibiotics are no longer effective. It has become a serious public health problem whose solution requires medical research in order to explore novel effective antimicrobial molecules. On the one hand, antimicrobial peptides (AMPs) are regarded as good alternatives because of their generally broad-spectrum activities, but sometimes they can be easily degraded by the organism or be toxic to animal cells. On the other hand, cationic carbosilane dendrons, whose focal point can be functionalized in many different ways, have also shown good antimicrobial activity. In this work, we synthetized first- and second-generation cationic carbosilane dendrons with a maleimide molecule on their focal point, enabling their functionalization with three different AMPs. After different microbiology studies, we found an additive effect between first-generation dendron and AMP3 whose study reveals three interesting effects: (i) bacteria aggregation due to AMP3, which could facilitate bacteria detection or even contribute to antibacterial activity by preventing host cell attack, (ii) bacteria disaggregation capability of second-generation cationic dendrons, and (iii) a higher AMP3 aggregation ability when dendrons were added previously to peptide treatment. These compounds and their different effects observed over bacteria constitute an interesting system for further mechanism studies.


Subject(s)
Anti-Infective Agents/chemistry , Dendrimers/chemistry , Nanoconjugates/chemistry , Silanes/chemistry , Maleimides/chemistry
11.
J Med Chem ; 61(20): 9335-9346, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30257092

ABSTRACT

Bivalent ligands have emerged as chemical tools to study G protein-coupled receptor dimers. Using a combination of computational, chemical, and biochemical tools, here we describe the design of bivalent ligand 13 with high affinity ( KDB1 = 21 pM) for the dopamine D2 receptor (D2R) homodimer. Bivalent ligand 13 enhances the binding affinity relative to monovalent compound 15 by 37-fold, indicating simultaneous binding at both protomers. Using synthetic peptides with amino acid sequences of transmembrane (TM) domains of D2R, we provide evidence that TM6 forms the interface of the homodimer. Notably, the disturber peptide TAT-TM6 decreased the binding of bivalent ligand 13 by 52-fold and had no effect on monovalent compound 15, confirming the D2R homodimer through TM6 ex vivo. In conclusion, by using a versatile multivalent chemical platform, we have developed a precise strategy to generate a true bivalent ligand that simultaneously targets both orthosteric sites of the D2R homodimer.


Subject(s)
Drug Design , Protein Multimerization , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Animals , CHO Cells , Cricetulus , Female , Ligands , Male , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Sheep
12.
Bioinformatics ; 34(22): 3857-3863, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29850769

ABSTRACT

Motivation: Bivalent ligands are increasingly important such as for targeting G protein-coupled receptor (GPCR) dimers or proteolysis targeting chimeras (PROTACs). They contain two pharmacophoric units that simultaneously bind in their corresponding binding sites, connected with a spacer chain. Here, we report a molecular modelling tool that links the pharmacophore units via the shortest pathway along the receptors van der Waals surface and then scores the solutions providing prioritization for the design of new bivalent ligands. Results: Bivalent ligands of known dimers of GPCRs, PROTACs and a model bivalent antibody/antigen system were analysed. The tool could rapidly assess the preferred linker length for the different systems and recapitulated the best reported results. In the case of GPCR dimers the results suggest that in some cases these ligands might bind to a secondary binding site at the extracellular entrance (vestibule or allosteric site) instead of the orthosteric binding site. Availability and implementation: Freely accessible from the Molecular Operating Environment svl exchange server (https://svl.chemcomp.com/). Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computers , Allosteric Site , Binding Sites , Ligands , Models, Molecular
13.
J Phys Chem B ; 122(16): 4481-4490, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29617132

ABSTRACT

Stimuli-responsive self-assembled monolayers (SAMs) are used to confer switchable physical, chemical, or biological properties to surfaces through the application of external stimuli. To obtain spatially and temporally tunable surfaces, we present microcontact printed SAMs of a hydroquinone molecule that are used as a dynamic interface to immobilize different functional molecules either via Diels-Alder or Michael thiol addition reactions upon the application of a low potential. In spite of the use of such reactions and the potential applicability of the resulting surfaces in different fields ranging from sensing to biomedicine through data storage or cleanup, a direct comparison of the two functionalization strategies on a surface has not yet been performed. Although the Michael thiol addition requires molecules that are commercial or easy to synthesize in comparison with the cyclopentadiene derivatives needed for the Diels-Alder reaction, the latter reaction produces more homogeneous coverages under similar experimental conditions.

14.
ACS Appl Mater Interfaces ; 8(39): 25741-25752, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27610822

ABSTRACT

Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.


Subject(s)
Polyelectrolytes/chemistry , Chitosan , Drug Delivery Systems , Enzyme Replacement Therapy , Fabry Disease , Humans , Lysosomes
15.
Adv Healthc Mater ; 5(7): 829-40, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26890358

ABSTRACT

Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules, such as lipids, glycoproteins, and mucopolysaccharides. For instance, the lack of α-galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology. Enzyme replacement therapy, which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with Arginine-Glycine-Aspartic acid (RGD) peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the depressurization of a CO2 -expanded liquid organic solution, shows the great potential of this CO2 -based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest.


Subject(s)
Intracellular Space/metabolism , Liposomes/chemistry , Nanoparticles/chemistry , alpha-Galactosidase/metabolism , Animals , Aorta/pathology , Endocytosis , Endothelial Cells/metabolism , Flow Cytometry , Humans , Mice, Knockout , Models, Molecular , Nanoconjugates/chemistry , Nanoconjugates/ultrastructure , Nanoparticles/ultrastructure
16.
Macromol Biosci ; 15(8): 1035-44, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25943094

ABSTRACT

BMP-2 and TGF-ß1 released from injectable thermoresponsive hydrogels are studied in the presence and absence of branched macromolecules bearing BMP-2 or TGF-ß1 affinity binding peptides. The synthesized branched macromolecules and the gelling compositions before and after loading with either BMP-2 or TGF-ß1 are characterized physico-chemically and show a significantly lower amount of proteins released in the presence of the affinity binding peptide macromolecules. This study illustrates the potential of affinity binding peptide functionalized dendrimers to modulate the local delivery and availability of growth factors important for musculoskeletal regeneration therapies.


Subject(s)
Bone Morphogenetic Protein 2/chemistry , Drug Delivery Systems , Hyaluronic Acid/chemistry , Transforming Growth Factor beta1/chemistry , Amino Acids/chemistry , Bone Morphogenetic Protein 2/metabolism , Delayed-Action Preparations , Dendrimers/chemistry , Dendrimers/pharmacology , Humans , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Magnetic Resonance Spectroscopy , Nanotechnology , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Rheology , Transforming Growth Factor beta1/metabolism
17.
J Org Chem ; 79(23): 11409-15, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25384234

ABSTRACT

A novel method for the synthesis of para-substituted phenylalanine containing cyclic peptides is described. The main features of this strategy are the coupling of phenylalanine to the solid support through its side chain via a triazene linkage, on-resin cyclization of the peptide chain, cleavage of the cyclic peptide from the resin under mild acidic conditions and further transformation of the resulting diazonium salt. The usefulness of this approach is exemplified by the solid-phase synthesis of some derivatives of the naturally occurring cyclic depsipeptide zygosporamide.


Subject(s)
Depsipeptides/chemical synthesis , Peptides/chemical synthesis , Phenylalanine/chemistry , Phenylalanine/chemical synthesis , Triazenes/chemistry , Depsipeptides/chemistry , Peptides/chemistry , Solid-Phase Synthesis Techniques
18.
Acta Biomater ; 10(10): 4340-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24993802

ABSTRACT

The controlled presentation of biofunctionality is of key importance for hydrogel applications in cell-based regenerative medicine. Here, a versatile approach was demonstrated to present clustered binding epitopes in an injectable, thermoresponsive hydrogel. Well-defined multivalent dendrimers bearing four integrin binding sequences and an azido moiety were covalently grafted to propargylamine-derived hyaluronic acid (Hyal-pa) using copper-catalyzed alkyne-azide cycloaddition (CuAAC), and then combined with pN-modified hyaluronan (Hyal-pN). The dendrimers were prepared by synthesizing a bifunctional diethylenetriamine pentaacetic acid core with azido and NHBoc oligo(ethylene glycol) aminoethyl branches, then further conjugated with solid-phase synthesized RGDS and DGRS peptides. Azido terminated pN was synthesized by reversible addition-fragmentation chain transfer polymerization and reacted to Hyal-pa via CuAAC. Nuclear magnetic resonance (NMR), high performance liquid chromatography, size exclusion chromatography and mass spectroscopy proved that the dendrimers had well-defined size and were disubstituted. NMR and atomic absorption analysis confirmed the hyaluronan was affixed with dendrimers or pN. Rheological measurements demonstrated that dendrimers do not influence the elastic or viscous moduli of thermoresponsive hyaluronan compositions at a relevant biological concentration. Finally, human mesenchymal stromal cells were encapsulated in the biomaterial and cultured for 21days, demonstrating the faculty of this dendrimer-modified hydrogel as a molecular toolbox for tailoring the biofunctionality of thermoresponsive hyaluronan carriers for biomedical applications.


Subject(s)
Dendrimers/chemistry , Epitopes/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Chromatography, High Pressure Liquid , Dendrimers/chemical synthesis , Female , Humans , Hydrogels/chemical synthesis , Magnetic Resonance Spectroscopy , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regenerative Medicine/methods
19.
Org Lett ; 16(5): 1318-21, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24527761

ABSTRACT

A highly versatile synthetic strategy is described to generate multimodal and multivalent platforms based on a diethylenetriaminepentaacetic (DTPA) core. Compounds with different functionalization patterns, from mono- to pentamodal, have been prepared using robust and simple chemistry.


Subject(s)
Pentetic Acid/chemistry , Chelating Agents , Models, Molecular , Molecular Structure , Pentetic Acid/chemical synthesis
20.
Eur J Med Chem ; 76: 43-52, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24565572

ABSTRACT

Here we synthesized carbosilane, generation 1 to 3, and PEG-based dendrons functionalized at the periphery with NHBoc groups and at the focal point with azide and alkyne moieties, respectively. The coupling of these two types of dendrons via click chemistry led to the formation of new hybrid dendrimers with two distinct moieties, the hydrophobic carbosilane and the hydrophilic PEG-based dendron. The protected dendrimers were transformed into cationic ammonium dendrimers. These unique amphiphilic dendrimers were studied as vectors for gene therapy against HIV in peripheral blood mononuclear cells (PBMC) and their performance was compared with that of a PEG-free carbosilane dendrimer. The presence of the PEG moiety afforded lower toxicities and evidenced a weaker interaction between dendrimers and siRNA when compared to the homodendrimer analogous. Both features, lower toxicity and lower dendriplex strength, are key properties for use of these vectors as carriers of nucleic material.


Subject(s)
Dendrimers/chemistry , Genetic Therapy , Polyethylene Glycols/chemistry , Silanes/chemistry , Cations , Chromatography, High Pressure Liquid , HIV Infections/therapy , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...