Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 102(7): 927-945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38758435

ABSTRACT

The development and progression of hyperglycemia (HG) and HG-associated atherosclerosis are exacerbated by mitochondrial dysfunction due to dysregulated mitochondria-derived ROS generation. We recently synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and tested its dose-response therapeutic efficacy in mitigating HG-induced atherosclerosis in db/db mice. In comparison to simvastatin and pioglitazone, Mito-Esc administration resulted in a considerable reduction in body weights and improved glucose homeostasis, possibly by reducing hepatic gluconeogenesis, as indicated by a reduction in glycogen content, non-esterified free fatty acids (NEFA) levels, and fructose 1,6-bisphosphatase (FBPase) activity. Interestingly, Mito-Esc treatment, by regulating phospho-IRS and phospho-AKT levels, greatly improved palmitate-induced insulin resistance, resulting in enhanced glucose uptake in adipocytes and HepG2 cells. Also, and importantly, Mito-Esc administration prevented HG-induced atheromatous plaque formation and lipid accumulation in the descending aorta. In addition, Mito-Esc administration inhibited the HG-mediated increase in VACM, ICAM, and MAC3 levels in the aortic tissue, as well as reduced the serum pro-inflammatory cytokines and markers of senescence. In line with this, Mito-Esc significantly inhibited monocyte adherence to human aortic endothelial cells (HAECs) treated with high glucose and reduced high glucose-induced premature senescence in HAECs by activating the AMPK-SIRT1 pathway. In contrast, Mito-Esc failed to regulate high glucose-induced endothelial cell senescence under AMPK/SIRT1-depleted conditions. Together, the therapeutic efficacy of Mito-Esc in the mitigation of hyperglycemia-induced insulin resistance and the associated atherosclerosis is in part mediated by potentiating the AMPK-SIRT1 axis. KEY MESSAGES: Mito-Esc administration significantly mitigates diabetes-induced atherosclerosis. Mito-Esc improves hyperglycemia (HG)-associated insulin resistance. Mito-Esc inhibits HG-induced vascular senescence and inflammation in the aorta. Mito-Esc-mediated activation of the AMPK-SIRT1 axis regulates HG-induced endothelial cell senescence.


Subject(s)
Atherosclerosis , Hyperglycemia , Insulin Resistance , Mitochondria , Umbelliferones , Animals , Hyperglycemia/drug therapy , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/etiology , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , Humans , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Male , Hep G2 Cells , Sirtuin 1/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Glucose/metabolism
2.
Mech Ageing Dev ; 219: 111931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554949

ABSTRACT

Impaired mitochondrial fatty acid ß-oxidation (FAO) plays a role in the onset of several age-associated diseases, including atherosclerosis. In the current work, we investigated the efficacies of mitochondria-targeted esculetin (Mito-Esc) and metformin in enhancing FAO in human aortic endothelial cells (HAECs), and its relevance in the delay of cellular senescence and age-associated atherosclerotic plaque formation in Apoe-/- mice. Chronic culturing of HAECs with either Mito-Esc or metformin increased oxygen consumption rates (OCR), and caused delay in senescence features. Conversely, etomoxir (CPT1 inhibitor) reversed Mito-Esc- and metformin-induced OCR, and caused premature endothelial senescence. Interestingly, Mito-Esc, unlike metformin, in the presence of etomoxir failed to preserve OCR. Thereby, underscoring Mito-Esc's exclusive reliance on FAO as an energy source. Mechanistically, chronic culturing of HAECs with either Mito-Esc or metformin led to AMPK activation, increased CPT1 activity, and acetyl-CoA levels along with a concomitant reduction in malonyl-CoA levels, and lipid accumulation. Similar results were observed in Apoe-/- mice aorta and liver tissue with a parallel reduction in age-associated atherosclerotic plaque formation and degeneration of liver with either Mito-Esc or metformin administration. Together, Mito-Esc and metformin by potentiating FAO, may have a role in the delay of cellular senescence by modulating mitochondrial function.


Subject(s)
Atherosclerosis , Cellular Senescence , Endothelial Cells , Fatty Acids , Metformin , Mitochondria , Oxidation-Reduction , Umbelliferones , Animals , Metformin/pharmacology , Umbelliferones/pharmacology , Cellular Senescence/drug effects , Mice , Oxidation-Reduction/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Fatty Acids/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Aging/metabolism , Aging/drug effects
3.
Geroscience ; 46(2): 2391-2408, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968424

ABSTRACT

Atherosclerosis, in general, is an age-associated cardiovascular disease wherein a progressive decline in mitochondrial function due to aging majorly contributes to the disease development. Mitochondria-derived ROS due to dysregulated endothelial cell function accentuates the progression of atherosclerotic plaque formation. To circumvent this, mitochondrially targeted antioxidants are emerging as potential candidates to combat metabolic abnormalities. Recently, we synthesized an alkyl TPP+ tagged esculetin (Mito-Esc), and in the current study, we investigated the therapeutic efficacies of Mito-Esc and metformin, a well-known anti-diabetic drug, in the amelioration of age-associated plaque formation in the aortas of 12 months aged Apoe-/- and 20 months aged C57BL/6 mice, in comparison to young C57BL/6 control mice. Administration of Mito-Esc or metformin significantly reduced age-induced atherosclerotic lesion area, macrophage polarization, vascular inflammation, and senescence. Further, chronic passaging of human aortic endothelial cells (HAEC) with either Mito-Esc or metformin significantly delayed cellular senescence via the activation of the AMPK-SIRT1/SIRT6 axis. Conversely, depletion of either AMPK/SIRT1/SIRT6 caused premature senescence. Consistent with this, Mito-Esc or metformin treatment attenuated NFkB-mediated inflammatory signaling and enhanced ARE-mediated anti-oxidant responses in comparison to late passage control HAECs. Importantly, culturing of HAECs for several passages with either Mito-Esc or metformin significantly improved mitochondrial function. Overall, Mito-Esc and metformin treatments delay age-associated atherosclerosis by regulating vascular senescence via the activation of AMPK-SIRT1/SIRT6 axis.


Subject(s)
Atherosclerosis , Metformin , Sirtuins , Umbelliferones , Mice , Animals , Humans , Aged , Metformin/pharmacology , Metformin/therapeutic use , AMP-Activated Protein Kinases/metabolism , Sirtuin 1 , Endothelial Cells/pathology , Mice, Inbred C57BL , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Mitochondria/metabolism , Antioxidants/pharmacology , Sirtuins/metabolism , Sirtuins/therapeutic use
5.
Int Immunopharmacol ; 124(Pt B): 111070, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862737

ABSTRACT

Mitochondrial dysfunction due to deregulated production of mitochondria-derived ROS is implicated in the development and progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Recently, we synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and investigated its dose-response therapeutic efficacy in mitigating high-fat diet (HFD)-induced NAFLD and NASH in Apoe-/- mice. Mito-Esc administration, compared to simvastatin and pioglitazone, dose-dependently caused a significant reduction in body weight, improved lipid profile, glucose homeostasis, and pro-inflammatory cytokines level. Mito-Esc administration reduced adipose tissue hypertrophy and lipid accumulation presumably by regulating the levels of CD36, PPAR-γ, EBP-α, and their target genes. Mechanistically, Mito-Esc-induced activation of the AMPK1α-SIRT1 axis inhibited pre-adipocyte differentiation. Conversely, Mito-Esc failed to regulate pre-adipocyte differentiation under AMPK/SIRT1 depleted conditions. In parallel, Mito-Esc administration ameliorated HFD-induced steatosis, fibrosis of the liver, and NAFLD-associated atheromatous plaque formation in the aorta. Importantly, Mito-Esc administration inhibited HFD-induced infiltration of macrophages, a marker of steatohepatitis, in the adipose and liver tissues. The results of the in vitro studies showed that Mito-Esc treatment significantly inhibits TGF-ß-induced hepatic stellate cell differentiation as well as the fibrotic markers. Consistent with the above observations, Mito-Esc treatment by activating the AMPK-SIRT1 pathway markedly reversed palmitate-induced mitochondrial superoxide production, depolarization of mitochondrial membrane potential, and lipid accumulation in HepG2 cells. Together, the therapeutic efficacy of Mito-Esc in the mitigation of HFD-induced lipotoxicity, and the associated NASH is in part, mediated by potentiating the AMPK-SIRT1 axis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Sirtuin 1/metabolism , Signal Transduction/physiology , Liver/pathology , Mitochondria/metabolism , Fibrosis , Lipids/therapeutic use , Diet, High-Fat , Mice, Inbred C57BL
6.
Curr Eye Res ; 48(3): 251-262, 2023 03.
Article in English | MEDLINE | ID: mdl-36458563

ABSTRACT

PURPOSE: To demonstrate the suitability of using decellularized SMILE (Small-incision Lenticule Extraction) lenticules for culturing and transplanting the corneal endothelium (CE). METHODS: The SMILE lenticules, obtained during refractive surgery, were decellularized by incubating in CE culture medium and fetal bovine serum. Decellularization was confirmed by hematoxylin and eosin staining, DAPI staining, and gel electrophoresis. The amount of DNA per milligram of dry tissue weight was calculated to quantify the residual nuclear content. The transparency of the decellularized lenticules was determined by calculating the modulation transfer function. Immunostaining for stromal collagens and glycosaminoglycan was performed using specific antibodies. Engineered tissue was constructed by culturing the CE cells on lenticules and staining for ZO-1, Na/K ATPase, and N-cadherin. The functionality of the engineered tissues was assessed by transplanting them onto edematous human donor corneas and perfusing for 10 days ex-vivo. RESULTS: The residual DNA per milligram of dry tissue weight was found to be significantly reduced (p < 0.0001) in serum (0.255 µg/mg) and Opti-MEM (0.140 µg/mg) when compared to fresh lenticules (3.9 µg/mg). Decellularization did not alter the arrangement of the collagen fibers or the transparency of the lenticules. CE cells attached and matured to express ZO-1, Na/K ATPase, and N-cadherin at two weeks after seeding. The engineered tissue upon transplantation significantly reduced the corneal edema (p < 0.05) and the transplanted cells remained intact on the SMILE lenticule post-transplantation. CONCLUSION: This study demonstrates the suitability of using SMILE lenticules decellularized using a simple, chemical-free method for engineering the corneal endothelium for transplantation.


Subject(s)
Corneal Surgery, Laser , Corneal Transplantation , Humans , Corneal Stroma/transplantation , Cornea/surgery , Corneal Transplantation/methods , Transplantation, Homologous , Adenosine Triphosphatases , Corneal Surgery, Laser/methods
7.
FEBS J ; 290(2): 502-520, 2023 01.
Article in English | MEDLINE | ID: mdl-36017623

ABSTRACT

DOT1L, a specific H3K79 methyltransferase, has a tumour-promoting role in various cancers, including triple-negative breast cancer (TNBC). However, the molecular mechanism by which the deregulated DOT1L promotes cancer progression is unclear. Herein, we show that a significantly higher basal level of DOTL1 strongly correlates with MTDH, an oncogene, in clinical TNBC patient cohorts and mediates TNBC progression by enhancing MTDH-induced angiogenesis. In parallel, severe combined immunodeficiency mice-bearing MDA-MB-231 cells with MTDH-Wt or MTDHΔ7 (spliced isoform of MTDH) overexpression constructs showed enhanced blood vessel formations at the tumour site in comparison with control groups. Selective inhibition of DOT1L by EPZ004777, a specific DOT1L inhibitor, or siDOT1L, significantly impaired MTDH-induced proliferation, invasion and angiogenic markers expression in TNBC cells. ChIP assay revealed that Dot1L promotes MTDH-Wt/Δ7 transcription by increasing H3K79me3 levels on its promoter. Dot1L depletion reversed this effect. Mechanistically, DOT1L-induced MTDH caused enhanced nuclear factor kappa B (NF-κB) occupancy on the hypoxia-inducible factor1α (HIF1α) promoter and increased its transcription, leading to elevated levels of proangiogenic mediators in TNBC cells. Moreover, the condition media obtained from MDA-MB-231 cells stably expressing either MTDH-Wt or MTDHΔ7 treated with EPZ004777 or Bay-11-7082 (NF-κB inhibitor) or FM19G11 (HIF1α inhibitor) significantly inhibited MTDH-induced tube formation in human umbilical vein endothelial cells, rat aortic ring sprouting and vessel formations by chick chorioallantoic membrane assay mimicking physiological angiogenic vasculature. Collectively, our findings reveal a novel epigenetic regulation of MTDH by DOTL1, which drives angiogenesis, and that the therapeutic disruption of the DOT1L-MTDH-NF-κB-HIF1α axis may have usefulness in the management of TNBC.


Subject(s)
NF-kappa B , Triple Negative Breast Neoplasms , Mice , Humans , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Triple Negative Breast Neoplasms/pathology , Epigenesis, Genetic , Endothelial Cells/metabolism , Cell Line, Tumor , Cell Proliferation , Histone-Lysine N-Methyltransferase/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Atherosclerosis ; 356: 28-40, 2022 09.
Article in English | MEDLINE | ID: mdl-35961209

ABSTRACT

BACKGROUND AND AIMS: Age is a dominant and independent risk factor for the development of atherosclerosis, a major cardiovascular disease, and if left untreated leads to myocardial infarction and death. Mitochondria-targeted anti-oxidants are evolving as a new class of compounds that can alter the pathophysiology of age-related diseases, including atherosclerosis, where mitochondrial dysfunction plays a critical role in disease progression. METHODS: We recently synthesized an alkyl TPP + -tagged esculetin (mitochondria-targeted esculetin or Mito-Esc). Apoe-/- mice were chronically (14 months) administered with Mito-Esc to investigate its efficacy in the mitigation of atherosclerosis in the setting of aging. We monitored BP, and performed various biochemical assays, histopathology, immunohistochemistry, inflammatory factors, qPCR, and Western blotting. Simultaneously, human aortic endothelial cells (HAECs) were used as a model system to study the mechanistic aspects. RESULTS: A chronic low-dose administration of Mito-Esc to Apoe-/- mice greatly prevented alterations in lipid profile, blood pressure, and atherosclerotic plaque formation in the setting of aging. Mito-Esc administration significantly reduced vascular senescence and pro-inflammatory cytokines levels and prevented dysregulation of mitochondrial biogenesis markers in aortic tissue. Further, Mito-Esc treatment prevented replicative and stress-induced premature senescence (SIPS) in HAEC. Importantly, Mito-Esc treatment delayed endothelial cell senescence by increasing human telomerase reverse transcriptase (hTERT) levels via SIRT1 activation. Moreover, Mito-Esc treatment by altering miR-19b and miR-30c via a SIRT1 activation significantly inhibited the increase in PAI-1 levels in HAEC as well as in the serum of Apoe-/- mice. In addition, Mito-Esc treatment improved mitochondrial function in late passage (aged) HAECs by enhancing the oxygen consumption rate (OCR). Furthermore, Mito-Esc administration counteracted the decline in GSH and nitrite levels in Apoe-/- mice and in HAECs. CONCLUSIONS: Overall, Mito-Esc alleviates atherosclerosis in the setting of aging by delaying vascular senescence and pro-inflammatory processes, and by improving mitochondrial biogenesis and function.


Subject(s)
Atherosclerosis , MicroRNAs , Aged , Aging , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cellular Senescence , Endothelial Cells/metabolism , Humans , Mice , MicroRNAs/metabolism , Mitochondria/metabolism , Sirtuin 1/metabolism , Umbelliferones
SELECTION OF CITATIONS
SEARCH DETAIL
...