Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36290776

ABSTRACT

Hydrogen peroxide (H2O2) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H2O2 tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H2O2 tolerance in Escherichia coli. Our TraDIS analysis identified 10 mutants with fitness defect upon H2O2 exposure, among which previously H2O2-associated genes (oxyR, dps, dksA, rpoS, hfq and polA) and other genes with no known association with H2O2 tolerance in E. coli (corA, rbsR, nhaA and gpmA). This is the first description of the impact of gpmA, a gene involved in glycolysis, on the susceptibility of E. coli to H2O2. Indeed, confirmatory experiments showed that the deletion of gpmA led to a specific hypersensitivity to H2O2 comparable to the deletion of the major H2O2 scavenger gene katG. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of gpmA was upregulated under H2O2 exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified gpmA as a member of the oxidative stress defense mechanism in E. coli.

2.
Sci Rep ; 12(1): 11629, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35804085

ABSTRACT

The study of clinically relevant bacterial pathogens relies on molecular and genetic approaches. However, the generally low transformation frequency among natural isolates poses technical hurdles to widely applying common methods in molecular biology, including transformation of large constructs, chromosomal genetic manipulation, and dense mutant library construction. Here we demonstrate that culturing clinical isolates in the presence of polymyxin B nonapeptide (PMBN) improves their transformation frequency via electroporation by up to 100-fold in a dose-dependent and reversible manner. The effect was observed for PMBN-binding uropathogenic Escherichia coli (UPEC) and Salmonella enterica strains but not naturally polymyxin resistant Proteus mirabilis. Using our PMBN electroporation method we show efficient delivery of large plasmid constructs into UPEC, which otherwise failed using a conventional electroporation protocol. Moreover, we show a fivefold increase in the yield of engineered mutant colonies obtained in S. enterica with the widely used lambda-Red recombineering method, when cells are cultured in the presence of PMBN. Lastly, we demonstrate that PMBN treatment can enhance the delivery of DNA-transposase complexes into UPEC and increase transposon mutant yield by eightfold when constructing Transposon Insertion Sequencing (TIS) libraries. Therefore, PMBN can be used as a powerful electropermeabilisation adjuvant to aid the delivery of DNA and DNA-protein complexes into clinically important bacteria.


Subject(s)
Escherichia coli , Polymyxin B , Electroporation , Polymyxin B/analogs & derivatives , Polymyxin B/chemistry , Polymyxin B/pharmacology , Polymyxins
3.
PLoS Genet ; 17(12): e1009586, 2021 12.
Article in English | MEDLINE | ID: mdl-34941903

ABSTRACT

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Subject(s)
Cell Wall/genetics , Escherichia coli Proteins/genetics , Lipopolysaccharides/genetics , Oxidoreductases/genetics , Peptidoglycan/genetics , Cell Division/genetics , Cell Membrane/genetics , Cell Membrane/microbiology , Cell Wall/microbiology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Lipopolysaccharides/biosynthesis , Mutagenesis , Phospholipids/biosynthesis , Phospholipids/genetics
4.
mBio ; 12(3)2021 05 04.
Article in English | MEDLINE | ID: mdl-33947763

ABSTRACT

Gram-negative bacteria have a unique cell envelope with a lipopolysaccharide-containing outer membrane that is tightly connected to a thin layer of peptidoglycan. The tight connection between the outer membrane and peptidoglycan is needed to maintain the outer membrane as an impermeable barrier for many toxic molecules and antibiotics. Enterobacteriaceae such as Escherichia coli covalently attach the abundant outer membrane-anchored lipoprotein Lpp (Braun's lipoprotein) to tripeptides in peptidoglycan, mediated by the transpeptidases LdtA, LdtB, and LdtC. LdtD and LdtE are members of the same family of ld-transpeptidases but they catalyze a different reaction, the formation of 3-3 cross-links in the peptidoglycan. The function of the sixth homologue in E. coli, LdtF, remains unclear, although it has been shown to become essential in cells with inhibited lipopolysaccharide export to the outer membrane. We now show that LdtF hydrolyzes the Lpp-peptidoglycan linkage, detaching Lpp from peptidoglycan, and have renamed LdtF to peptidoglycan meso-diaminopimelic acid protein amidase A (DpaA). We show that the detachment of Lpp from peptidoglycan is beneficial for the cell under certain stress conditions and that the deletion of dpaA allows frequent transposon inactivation in the lapB (yciM) gene, whose product downregulates lipopolysaccharide biosynthesis. DpaA-like proteins have characteristic sequence motifs and are present in many Gram-negative bacteria, of which some have no Lpp, raising the possibility that DpaA has other substrates in these species. Overall, our data show that the Lpp-peptidoglycan linkage in E. coli is more dynamic than previously appreciated.IMPORTANCE Gram-negative bacteria have a complex cell envelope with two membranes and a periplasm containing the peptidoglycan layer. The outer membrane is firmly connected to the peptidoglycan by highly abundant proteins. The outer membrane-anchored Braun's lipoprotein (Lpp) is the most abundant protein in E. coli, and about one-third of the Lpp molecules become covalently attached to tripeptides in peptidoglycan. The attachment of Lpp to peptidoglycan stabilizes the cell envelope and is crucial for the outer membrane to function as a permeability barrier for a range of toxic molecules and antibiotics. So far, the attachment of Lpp to peptidoglycan has been considered to be irreversible. We have now identified an amidase, DpaA, which is capable of detaching Lpp from peptidoglycan, and we show that the detachment of Lpp is important under certain stress conditions. DpaA-like proteins are present in many Gram-negative bacteria and may have different substrates in these species.


Subject(s)
Amidohydrolases/metabolism , Diaminopimelic Acid/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipoproteins/metabolism , Peptidoglycan/metabolism , Amidohydrolases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipoproteins/classification
5.
Elife ; 102021 02 24.
Article in English | MEDLINE | ID: mdl-33625358

ABSTRACT

Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here, we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.


Subject(s)
Escherichia coli/metabolism , Glycine/metabolism , Lipoproteins/metabolism , Acylation , Protein Transport
6.
BMC Res Notes ; 11(1): 630, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30170618

ABSTRACT

OBJECTIVES: ESBL-producing isolates of the Enterobacteriaceae occur throughout the world. The objectives of this study were to characterize uropathogenic Escherichia coli isolated at a tertiary care hospital in southern India, and shed light on blaCTX-M sequences of Indian origin. RESULTS: A cohort of 13 urinary isolates of E. coli (obtained from patients at the Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Andhra Pradesh, India) were characterized and found to be resistant to multiple antibiotics, including extended-spectrum cephalosporins. All 13 isolates contained blaCTX-M-15, and many of them transferred this genotype to at least one laboratory strain of E. coli after conjugation. Analyses of blaCTX-M-15 sequences (n = 141) of Indian origin showed that > 85% of them were obtained from bacteria not associated with the urinary tract, and that E. coli isolates account for majority of all blaCTX-M-15-carrying bacteria reported from India. Other types of blaCTX-M appear to be rare in India, since only six such sequences were reported as of July 2015. The results indicate that 'selection pressure' exerted by extended-spectrum cephalosporins may have stabilized the blaCTX-M-15 genotype among E. coli in India. The rarity of other blaCTX-M suggests that they lack the survival advantage that blaCTX-M-15 may have.


Subject(s)
Cephalosporins/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections , Humans , India , Sequence Analysis, DNA , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL
...