Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Agron Sustain Dev ; 41(5): 62, 2021.
Article in English | MEDLINE | ID: mdl-34484434

ABSTRACT

In Latin America, the cultivation of Arabica coffee (Coffea arabica) plays a critical role in rural livelihoods, biodiversity conservation, and sustainable development. Over the last 20 years, coffee farms and landscapes across the region have undergone rapid and profound biophysical changes in response to low coffee prices, changing climatic conditions, severe plant pathogen outbreaks, and other drivers. Although these biophysical transformations are pervasive and affect millions of rural livelihoods, there is limited information on the types, location, and extent of landscape changes and their socioeconomic and ecological consequences. Here we review the state of knowledge on the ongoing biophysical changes in coffee-growing regions, explore the potential socioeconomic and ecological impacts of these changes, and highlight key research gaps. We identify seven major land-use trends which are affecting the sustainability of coffee-growing regions across Latin America in different ways. These trends include (1) the widespread shift to disease-resistant cultivars, (2) the conventional intensification of coffee management with greater planting densities, greater use of agrochemicals and less shade, (3) the conversion of coffee to other agricultural land uses, (4) the introduction of Robusta coffee (Coffea canephora) into areas not previously cultivated with coffee, (5) the expansion of coffee into forested areas, (6) the urbanization of coffee landscapes, and (7) the increase in the area of coffee produced under voluntary sustainability standards. Our review highlights the incomplete and scattered information on the drivers, patterns, and outcomes of biophysical changes in coffee landscapes, and lays out a detailed research agenda to address these research gaps and elucidate the effects of different landscape trajectories on rural livelihoods, biodiversity conservation, and other aspects of sustainable development. A better understanding of the drivers, patterns, and consequences of changes in coffee landscapes is vital for informing the design of policies, programs, and incentives for sustainable coffee production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13593-021-00712-0.

2.
Environ Manage ; 64(2): 201-212, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31214771

ABSTRACT

Pasture degradation hinders livestock production and ecosystem services that support rural smallholder communities throughout Latin America. Silvopastoral systems, with improved pasture cultivars (especially Brachiaria spp.) and multipurpose trees, offer a promising strategy to restore soils and improve livelihoods in the region. However, studies evaluating the impact of such systems on pasture productivity and soil health under realistic smallholder constraints are lacking. We evaluated the impact of improved pasture grass and tree establishment on a suite of soil health indicators in actively grazed, low-input, farmer-managed silvopastoral systems. In August 2013, paired pasture treatments (improved grass with trees vs. traditional pastures) were established on nine farms with similar land-use histories near Matagalpa, Nicaragua. On each farm, one treatment was left as traditional pasture with naturalized grass (Hyparrhenia rufa), while the adjacent treatment was sown with the improved grass (Brachiaria brizantha cv. Marandu) and planted with tree saplings without fertilizer. In August 2015, we measured standing biomass and a suite of chemical, biological, and physical soil health variables. Improved silvopastoral systems with B. brizantha produced more standing grass biomass and supported higher levels of earthworm populations and permanganate oxidizable carbon (POXC) compared to the traditional control. Correlations suggest that earthworms and POXC were associated with incipient improvements to soil aggregate stability and water holding capacity. We report measurable improvements to soil health just two years following the establishment of improved pasture systems under common smallholder management practices and suggest that these systems, even with minimal fertility inputs, have the potential to enhance regional sustainability.


Subject(s)
Ecosystem , Soil , Agriculture , Animals , Fertilizers , Livestock , Nicaragua
3.
Curr Opin Environ Sustain ; 4(1): 101-105, 2012 Feb.
Article in English | MEDLINE | ID: mdl-25104977

ABSTRACT

DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: "Biodiversity and Ecosystem Services Science for a Sustainable Planet". This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network - GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services - IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011-2020). This article presents the vision and its core scientific challenges.

SELECTION OF CITATIONS
SEARCH DETAIL
...