Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 923: 171323, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438031

ABSTRACT

Particulate matter represents one of the most severe air pollutants globally. Organic aerosol (OA) comprises 30-70 % of submicron particle mass in urban areas. An effective way to mitigate OA particulate pollutants is to reduce the formation of secondary organic aerosol (SOA). Here, we studied the effect of titanium dioxide (TiO2) photocatalytic seeds on the formation and mitigation of SOA particles from α-pinene or toluene oxidation in chamber. For the first time, we discovered that under ultraviolet (UV) irradiation, the presence of TiO2 directly removed internally mixed α-pinene SOA mass by 53.7 % within 200 mins, and also directly removed SOA matter in an externally mixed state that is not in direct contact with TiO2 surface: the mass of externally mixed α-pinene SOA was reduced by 21.9 % within 81 mins, and the toluene SOA mass was reduced by 46.6 % in 145mins. In addition, the presence of TiO2 effectively inhibited the formation of SOA particles with a SOA mass yield of zero. This study brings up an innovative concept for air pollution control - the direct photocatalytic degradation of OA with aid of TiO2-based photocatalysts. Our novel findings will potentially bring practical applications in air pollution abatement and regional, even global aerosol-climate interactions.

2.
Sci Adv ; 8(42): eabp8702, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36269820

ABSTRACT

Secondary organic aerosol (SOA), formed by oxidation of volatile organic compounds, substantially influence air quality and climate. Highly oxygenated organic molecules (HOMs), particularly those formed from biogenic monoterpenes, contribute a large fraction of SOA. During daytime, hydroxyl radicals initiate monoterpene oxidation, mainly by hydroxyl addition to monoterpene double bonds. Naturally, related HOM formation mechanisms should be induced by that reaction route, too. However, for α-pinene, the most abundant atmospheric monoterpene, we find a previously unidentified competitive pathway under atmospherically relevant conditions: HOM formation is predominately induced via hydrogen abstraction by hydroxyl radicals, a generally minor reaction pathway. We show by observations and theoretical calculations that hydrogen abstraction followed by formation and rearrangement of alkoxy radicals is a prerequisite for fast daytime HOM formation. Our analysis provides an accurate mechanism and yield, demonstrating that minor reaction pathways can become major, here for SOA formation and growth and related impacts on air quality and climate.

3.
Environ Sci Technol ; 55(23): 15658-15671, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34807606

ABSTRACT

The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO3) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO3-initiated oxidation of a representative monoterpene, ß-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior. The time lag observed in the peak concentrations between peroxy radicals containing odd and even number of oxygen atoms, as well as between radicals and their corresponding termination products, provided constraints on the HOM-ON formation mechanism. The HOM-ON formation can be explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion of carbonylnitrates in HOM-ON was detected, highlighting the significance of unimolecular termination reactions by intramolecular H-shift for the formation of HOM-ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation.


Subject(s)
Air Pollutants , Nitrates , Aerosols , Air Pollutants/analysis , Bicyclic Monoterpenes , Humans
4.
ACS Earth Space Chem ; 3(9): 1756-1772, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31565682

ABSTRACT

One barrier to predicting biogenic secondary organic aerosol (SOA) formation in a changing climate can be attributed to the complex nature of plant volatile emissions. Plant volatile emissions are dynamic over space and time, and change in response to environmental stressors. This study investigated SOA production from emissions of healthy and aphid-stressed Scots pine saplings via dark ozonolysis and photooxidation chemistry. Laboratory experiments using a batch reaction chamber were used to investigate SOA production from different plant volatile mixtures. The volatile mixture from healthy plants included monoterpenes, aromatics, and a small amount of sesquiterpenes. The biggest change in the volatile mixture for aphid-stressed plants was a large increase (from 1.4 to 7.9 ppb) in sesquiterpenes-particularly acyclic sesquiterpenes, such as the farnesene isomers. Acyclic sesquiterpenes had different effects on SOA production depending on the chemical mechanism. Farnesenes suppressed SOA formation from ozonolysis with a 9.7-14.6% SOA mass yield from healthy plant emissions and a 6.9-10.4% SOA mass yield from aphid-stressed plant emissions. Ozonolysis of volatile mixtures containing more farnesenes promoted fragmentation reactions, which produced higher volatility oxidation products. In contrast, plant volatile mixtures containing more farnesenes did not appreciably change SOA production from photooxidation. SOA mass yields ranged from 10.8 to 23.2% from healthy plant emissions and 17.8-26.8% for aphid-stressed plant emissions. This study highlights the potential importance of acyclic terpene chemistry in a future climate regime with an increased presence of plant stress volatiles.

5.
Nature ; 565(7741): 587-593, 2019 01.
Article in English | MEDLINE | ID: mdl-30700872

ABSTRACT

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).

6.
Nature ; 506(7489): 476-9, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24572423

ABSTRACT

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Subject(s)
Aerosols/chemistry , Models, Chemical , Volatile Organic Compounds/chemistry , Aerosols/analysis , Aerosols/metabolism , Atmosphere/chemistry , Bicyclic Monoterpenes , Climate , Ecosystem , Finland , Gases/analysis , Gases/chemistry , Monoterpenes/chemistry , Oxidation-Reduction , Ozone/chemistry , Particle Size , Trees/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...