Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(14): e202304272, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38226702

ABSTRACT

In the context of a project aiming at the replacement of the 3-substituted ß-lactam ring in classical ß-lactam antibiotics by an N(3)-acyl-1,3-diazetidinone moiety, we have investigated the reaction of isocyanates with imines derived from allyl glycinate and differently substituted propionaldehydes. Imines of aromatic aldehydes with anilines have been reported to react with acyl isocyanates to give 1,3-diazetidinones or 2,3-dihydro-4H-1,3,5-oxadiazin-4-ones, via [2+2] or [4+2] cycloaddition, respectively. However, neither of these products was formed with imines derived from allyl glycinate and 2-(mono)methyl propionaldehydes. α,α-Dimethylation of the imine enabled the [4+2] cycloaddition pathway, but the desired 1,3-diazetidinone products were not observed. Surprisingly, the imines obtained from thioesters of 2,2-dimethyl 3-oxo propionic acid reacted with aryl isocyanates or with benzyl isocyanate to give 5,5-dimethyl-2,4-dioxo-6-(aryl-/alkylthio)tetrahydropyrimidines, via thiol displacement and re-addition to a putative six-membered iminium intermediate. These experimental results obtained for the reactions could be rationalized by DFT calculations. In addition, we have shown that N(3)-acyl-1,3-diazetidinone and 2,3-dihydro-4H-1,3,5-oxadiazin-4-one products can be distinguished based on experimental IR data in combination with theoretical reference spectra employing the IR spectra alignment (IRSA) algorithm. This discrimination was not possible by means of 1 H, 13 C, or 15 N NMR spectroscopy.

2.
J Am Chem Soc ; 143(27): 10389-10402, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34212720

ABSTRACT

Mutanobactin D is a non-ribosomal, cyclic peptide isolated from Streptococcus mutans and shows activity reducing yeast-to-hyphae transition as well as biofilm formation of the pathogenic yeast Candida albicans. We report the first total synthesis of this natural product, which relies on enantioselective, zinc-mediated 1,3-dipolar cycloaddition and a sequence of cascading reactions, providing the key lipidated γ-amino acid found in mutanobactin D. The synthesis enables configurational assignment, determination of the dominant solution-state structure, and studies to assess the stability of the lipopeptide substructure found in the natural product. The information stored in the fingerprint region of the IR spectra in combination with quantum chemical calculations proved key to distinguishing between epimers of the α-substituted ß-keto amide. Synthetic mutanobactin D drives discovery and analysis of its effect on growth of other members of the human oral consortium. Our results showcase how total synthesis is central for elucidating the complex network of interspecies communications of human colonizers.


Subject(s)
Antifungal Agents/pharmacology , Peptides, Cyclic , Antifungal Agents/chemistry , Candida albicans/drug effects , Hyphae/drug effects , Models, Molecular , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology
3.
Org Lett ; 18(24): 6488-6491, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27978660

ABSTRACT

A palladium-catalyzed α-arylation of cyclic vinylogous esters to form products that are converted in one step to γ-alkyl-γ-aryl-substituted cyclohexenones is reported. This Pd-catalyzed reaction proceeds at room temperature, is generally high-yielding, and uses an amount of a commercially available catalyst as low as 0.25 mol %. The scope of aryl bromides is particularly broad, and alkenyl bromides can also be used. This two-step protocol, comprising α-arylation and reductive transposition, can be performed in one pot and is applicable to gram-scale synthesis.

4.
Inorg Chem ; 55(21): 11551-11559, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27723311

ABSTRACT

Isothermal electrolysis is a convenient preparation technique for a large number of intermetallic phases. A solution of the salt of a less-noble metal is electrolyzed on a cathode consisting of a liquid metal or intermetallic system. This yields crystalline products at mild reaction conditions in a few hours. We show the aptness and the limitations of this approach. First, we give an introduction into the relevance of electrolytic synthesis for chemistry. Then we present materials and techniques our group has developed for electrocrystallization that are useful for electrochemical syntheses in general. Subsequently, we discuss different phase formation eventualities and propose basic rationalization concepts, illustrated with examples from our work. The scope of this report is to present electrocrystallization as a well-known yet underestimated synthetic process, especially in intermetallic chemistry. For this purpose we adduce literature examples (Li3Ga14, NaGa4, K8Ga8Sn38), technical advice, basic concepts, and new crystal structures only available by this method: Li3Ga13Sn and CsIn12. Electrocrystallization has recently proven especially helpful in our work concerning synthesis of intermetallic phases with polar metal-metal bonding, especially Hg-rich amalgams of less-noble metals. With the term "polar metal-metal bonding" we describe phases where the constituting elements have large electronegativity difference and yet show incomplete electron transfer from the less-noble to the nobler metal. This distinguishes polar intermetallic phases from classical Zintl phases where the electron transfer is virtually complete. Polar metallic phases can show "bad metal behavior" and interesting combinations of ionic and metallic properties. Amalgams of less-noble metals are preeminent representatives for this class of intermetallic phases as Hg is the only noble metal with endothermic electron affinity and thus a very low tendency toward anion formation. To illustrate both the aptness of the electrocrystallization process and our interest in polar metals in the above-mentioned sense, we present amalgams but also Hg-free intermetallics.

SELECTION OF CITATIONS
SEARCH DETAIL
...