Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895377

ABSTRACT

Fusion oncoproteins, a class of chimeric proteins arising from chromosomal translocations, drive and sustain various cancers, particularly those impacting children. Unfortunately, due to their intrinsically disordered nature, large size, and lack of well-defined, druggable pockets, they have been historically challenging to target therapeutically: neither small molecule-based methods nor structure-based approaches for binder design are strong options for this class of molecules. Recently, protein language models (pLMs) have demonstrated success at representing protein sequences with information-rich embeddings, enabling downstream design applications from sequence alone. However, no current pLM has been trained on fusion oncoprotein sequences and thus may not produce optimal representations for these proteins. In this work, we introduce FusOn-pLM, a novel pLM that fine-tunes the state-of-the-art ESM-2 model on fusion oncoprotein sequences. We specifically introduce a novel masked language modeling (MLM) strategy, employing a binding-site probability predictor to focus masking on key amino acid residues, thereby generating more optimal fusion oncoprotein-aware embeddings. Our model improves performance on both fusion oncoprotein-specific benchmarks and disorder prediction tasks in comparison to baseline ESM-2 representations, as well as manually-constructed biophysical embeddings, motivating downstream usage of FusOn-pLM embeddings for therapeutic design tasks targeting these fusions. We have made our model publicly available to the community at https://huggingface.co/ChatterjeeLab/FusOn-pLM.

2.
ArXiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37873004

ABSTRACT

Target proteins that lack accessible binding pockets and conformational stability have posed increasing challenges for drug development. Induced proximity strategies, such as PROTACs and molecular glues, have thus gained attention as pharmacological alternatives, but still require small molecule docking at binding pockets for targeted protein degradation (TPD). The computational design of protein-based binders presents unique opportunities to access "undruggable" targets, but have often relied on stable 3D structures or predictions for effective binder generation. Recently, we have leveraged the expressive latent spaces of protein language models (pLMs) for the prioritization of peptide binders from sequence alone, which we have then fused to E3 ubiquitin ligase domains, creating a CRISPR-analogous TPD system for target proteins. However, our methods rely on training discriminator models for ranking heuristically or unconditionally-derived "guide" peptides for their target binding capability. In this work, we introduce PepMLM, a purely target sequence-conditioned de novo generator of linear peptide binders. By employing a novel masking strategy that uniquely positions cognate peptide sequences at the terminus of target protein sequences, PepMLM tasks the state-of-the-art ESM-2 pLM to fully reconstruct the binder region, achieving low perplexities matching or improving upon previously-validated peptide-protein sequence pairs. After successful in silico benchmarking with AlphaFold-Multimer, we experimentally verify PepMLM's efficacy via fusion of model-derived peptides to E3 ubiquitin ligase domains, demonstrating endogenous degradation of target substrates in cellular models. In total, PepMLM enables the generative design of candidate binders to any target protein, without the requirement of target structure, empowering downstream programmable proteome editing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...