Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 574, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631630

ABSTRACT

Data on the clinical validity of DNA copy number variants (CNVs) in spermatogenic failure (SPGF) is limited. This study analyzed the genome-wide CNV profile in 215 men with idiopathic SPGF and 62 normozoospermic fertile men, recruited at the Andrology Clinic, Tartu University Hospital, Estonia. A two-fold higher representation of > 1 Mb CNVs was observed in men with SPGF (13%, n = 28) compared to controls (6.5%, n = 4). Seven patients with SPGF were identified as carriers of microdeletions (1q21.1; 2.4 Mb) or microduplications (3p26.3, 1.1 Mb; 7p22.3-p22.2, 1.56 Mb; 10q11.22, 1.42 Mb, three cases; Xp22.33; 2.3 Mb) linked to severe congenital conditions. Large autosomal CNV carriers had oligozoospermia, reduced or low-normal bitesticular volume (22-28 ml). The 7p22.3-p22.2 microduplication carrier presented mild intellectual disability, neuropsychiatric problems, and short stature. The Xp22.33 duplication at the PAR1/non-PAR boundary, previously linked to uterine agenesis, was detected in a patient with non-obstructive azoospermia. A novel recurrent intragenic deletion in testis-specific LRRC69 was significantly overrepresented in patients with SPGF compared to the general population (3.3% vs. 0.85%; χ2 test, OR = 3.9 [95% CI 1.8-8.4], P = 0.0001). Assessment of clinically valid CNVs in patients with SPGF will improve their management and counselling for general and reproductive health, including risk of miscarriage and congenital disorders in future offspring.


Subject(s)
Azoospermia , DNA Copy Number Variations , Genetic Diseases, Inborn , Oligospermia , Humans , Male , Azoospermia/genetics , Estonia , Oligospermia/genetics , Testis/pathology , Chromosome Deletion , Chromosome Duplication , Genetic Diseases, Inborn/genetics , Intellectual Disability/genetics , Mental Disorders/genetics
2.
Am J Hum Genet ; 103(2): 200-212, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30075111

ABSTRACT

Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.


Subject(s)
Azoospermia/genetics , DNA Helicases/genetics , Loss of Heterozygosity/genetics , Adult , Animals , Breast Neoplasms/genetics , Codon, Nonsense/genetics , Female , Frameshift Mutation/genetics , Gene Silencing/physiology , Genetic Predisposition to Disease/genetics , Homozygote , Humans , Male , Mice , Middle Aged , Ovarian Neoplasms/genetics , Pedigree , Phenotype , Spermatozoa/pathology , Testis/pathology , Exome Sequencing/methods
3.
PLoS One ; 9(4): e94244, 2014.
Article in English | MEDLINE | ID: mdl-24718625

ABSTRACT

Follicle-Stimulating Hormone Receptor (FSHR) -29G/A polymorphism (rs1394205) was reported to modulate gene expression and reproductive parameters in women, but data in men is limited. We aimed to bring evidence to the effect of FSHR -29G/A variants in men. In Baltic young male cohort (n = 982; Estonians, Latvians, Lithuanians; aged 20.2 ± 2.0 years), the FSHR -29 A-allele was significantly associated with higher serum FSH (linear regression: effect 0.27 IU/L; P = 0.0019, resistant to Bonferroni correction for multiple testing) and showed a non-significant trend for association with higher LH (0.19 IU/L) and total testosterone (0.93 nmol/L), but reduced Inhibin B (-7.84 pg/mL) and total testes volume (effect -1.00 mL). Next, we extended the study and tested the effect of FSHR gene haplotypes determined by the allelic combination of FSHR -29G/A and a well-studied variant c.2039 A/G (Asn680Ser, exon 10). Among the FSHR -29A/2039G haplotype carriers (A-Ser; haplotype-based linear regression), this genetic effect was enhanced for FSH (effect 0.40 IU/L), Inhibin B (-16.57 pg/mL) and total testes volume (-2.34 mL). Finally, we estimated the total contribution of three known FSH-action modulating SNPs (FSHB -211G/T; FSHR -29G/A, c.2039 A/G) to phenotypic variance in reproductive parameters among young men. The major FSH-action modulating SNPs explained together 2.3%, 1.4%, 1.0 and 1.1% of the measured variance in serum FSH, Inhibin B, testosterone and total testes volume, respectively. In contrast to the young male cohort, neither FSHR -29G/A nor FSHR haplotypes appeared to systematically modulate the reproductive physiology of oligozoospermic idiopathic infertile patients (n = 641, Estonians; aged 31.5 ± 6.0 years). In summary, this is the first study showing the significant effect of FSHR -29G/A on male serum FSH level. To account for the genetic effect of known common polymorphisms modulating FSH-action, we suggest haplotype-based analysis of FSHR SNPs (FSHR -29G/A, c.2039 A/G) in combination with FSHB -211G/T testing.


Subject(s)
Follicle Stimulating Hormone, Human/blood , Follicle Stimulating Hormone, beta Subunit/physiology , Inhibins/blood , Oligospermia/genetics , Polymorphism, Single Nucleotide , Receptors, FSH/physiology , Testis/pathology , Testosterone/blood , 5' Untranslated Regions/genetics , Alleles , Baltic States , Follicle Stimulating Hormone, beta Subunit/genetics , Genetic Variation , Haplotypes , Humans , Male , Oligospermia/blood , Oligospermia/ethnology , Organ Size , Phenotype , Receptors, FSH/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...