Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; : e17448, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946210

ABSTRACT

Species with widespread distributions play a crucial role in our understanding of climate change impacts on population structure. In marine species, population structure is often governed by both high connectivity potential and selection across strong environmental gradients. Despite the complexity of factors influencing marine populations, studying species with broad distribution can provide valuable insights into the relative importance of these factors and the consequences of climate-induced alterations across environmental gradients. We used the northern shrimp Pandalus borealis and its wide latitudinal distribution to identify current drivers of population structure and predict the species' vulnerability to climate change. A total of 1514 individuals sampled across 24° latitude were genotyped at high geographic (54 stations) and genetic (14,331 SNPs) resolutions to assess genetic variation and environmental correlations. Four populations were identified in addition to finer substructure associated with local adaptation. Geographic patterns of neutral population structure reflected predominant oceanographic currents, while a significant proportion of the genetic variation was associated with gradients in salinity and temperature. Adaptive landscapes generated using climate projections suggest a larger genomic offset in the southern extent of the P. borealis range, where shrimp had the largest adaptive standing genetic variation. Our genomic results combined with recent observations point to further deterioration in southern regions and an impending vulnerable status in the regions at higher latitudes for P. borealis. They also provide rare insights into the drivers of population structure and climatic vulnerability of a widespread meroplanktonic species, which is crucial to understanding future challenges associated with invertebrates essential to ecosystem functioning.

2.
Sci Rep ; 11(1): 20744, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671077

ABSTRACT

Atlantic bluefin tuna (Thunnus thynnus; BFT) abundance was depleted in the late 20th and early 21st century due to overfishing. Historical catch records further indicate that the abundance of BFT in the Mediterranean has been fluctuating since at least the 16th century. Here we build upon previous work on ancient DNA of BFT in the Mediterranean by comparing contemporary (2009-2012) specimens with archival (1911-1926) and archaeological (2nd century BCE-15th century CE) specimens that represent population states prior to these two major periods of exploitation, respectively. We successfully genotyped and analysed 259 contemporary and 123 historical (91 archival and 32 archaeological) specimens at 92 SNP loci that were selected for their ability to differentiate contemporary populations or their association with core biological functions. We found no evidence of genetic bottlenecks, inbreeding or population restructuring between temporal sample groups that might explain what has driven catch fluctuations since the 16th century. We also detected a putative adaptive response, involving the cytoskeletal protein synemin which may be related to muscle stress. However, these results require further investigation with more extensive genome-wide data to rule out demographic changes due to overfishing, and other natural and anthropogenic factors, in addition to elucidating the adaptive drivers related to these.


Subject(s)
DNA, Ancient/chemistry , Genetic Variation/genetics , Tuna/genetics , Animals , Anthropogenic Effects , Conservation of Natural Resources/methods , Genotype , Mediterranean Sea
3.
Evol Appl ; 13(6): 1468-1486, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32684970

ABSTRACT

Striped Bass, Morone saxatilis (Walbaum, 1792), is an anadromous fish species that supports fisheries throughout North America and is native to the North American Atlantic Coast. Due to long coastal migrations that span multiple jurisdictions, a detailed understanding of population genomics is required to untangle demographic patterns, understand local adaptation, and characterize population movements. This study used 1,256 single nucleotide polymorphism (SNP) loci to investigate genetic structure of 477 Striped Bass sampled from 15 locations spanning the North American Atlantic coast from the Gulf of St. Lawrence, Canada, to the Cape Fear River, United States. We found striking differences in neutral divergence among Canadian sites, which were isolated from each other and US populations, compared with US populations that were much less isolated. Our SNP dataset was able to assign 99% of Striped Bass back to six reporting groups, a 39% improvement over previous genetic markers. Using this method, we found (a) evidence of admixture within Saint John River, indicating that migrants from the United States and from Shubenacadie River occasionally spawn in the Saint John River; (b) Striped Bass collected in the Mira River, Cape Breton, Canada, were found to be of both Miramichi River and US origin; (c) juveniles in the newly restored Kennebec River population had small and nonsignificant differences from the Hudson River; and (d) tributaries within the Chesapeake Bay showed a mixture of homogeny and small differences among each other. This study introduces new hypotheses about the dynamic zoogeography of Striped Bass at its northern range and has important implications for the local and international management of this species.

4.
Mol Ecol Resour ; 18(3): 620-638, 2018 May.
Article in English | MEDLINE | ID: mdl-29405659

ABSTRACT

The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species' stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young-of-the-year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST  = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid-Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.


Subject(s)
Polymorphism, Single Nucleotide , Tuna/genetics , Animal Migration , Animals , Atlantic Ocean , Chromosome Mapping , Gene Frequency , Genotyping Techniques , Mediterranean Sea , Population Dynamics , Sequence Analysis, DNA , Tuna/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...