Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(44): e202312048, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37669353

ABSTRACT

Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI-mediated electrochemical C-H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real-time probing of the profiles of redox-active components of these rapid electrosynthesis reactions.

2.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770145

ABSTRACT

MXene is becoming a "rising star" material due to its versatility for a wide portfolio of applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical applications, membranes, flexible and wearable devices, etc. As these applications promote increased interest in MXene research, summarizing the latest findings on this family of materials will help inform the scientific community. In this review, we first discuss the rapid evolutionary change in MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chemistry, etc., will be further discussed in the next section. Then, we review the applications of MXenes and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors, electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible and wearable devices. More importantly, we notice that its excellent metallic conductivity with its hydrophilic nature distinguishes MXene from other materials, and its properties and applications can be further modified by surface functionalization. MXene composites/hybrids outperform pristine MXenes in many applications. In addition, a summary of the latest findings using MXene-based materials to overcome application-specific drawbacks is provided in the last few sections. We hope that the information provided in this review will help integrate lab-scale findings into commercially viable products.

3.
J Org Chem ; 86(22): 15866-15874, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34546751

ABSTRACT

Electrosynthesis involves transferring charge between two electrodes to promote chemical reactions by applying potential. The modes of controlling the current and potential can affect the reaction mechanism, product distribution and yields, and add a control factor for reaction optimization. In this Synopsis, theoretical discussion is applied to specific case studies from the literature to illustrate methods of adjusting and tracking electrical parameters for the optimization and monitoring of electroorganic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...