Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6185, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794021

ABSTRACT

The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Mutation , Regulatory Sequences, Nucleic Acid , Promoter Regions, Genetic/genetics , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism
2.
Genome Res ; 33(3): 332-345, 2023 03.
Article in English | MEDLINE | ID: mdl-36927987

ABSTRACT

SWI/SNF and NuRD are protein complexes that antagonistically regulate DNA accessibility. However, repression of their activities often leads to unanticipated changes in target gene expression (paradoxical), highlighting our incomplete understanding of their activities. Here we show that SWI/SNF and NuRD are in a tug-of-war to regulate PRC2 occupancy at lowly expressed and bivalent genes in mouse embryonic stem cells (mESCs). In contrast, at promoters of average or highly expressed genes, SWI/SNF and NuRD antagonistically modulate RNA polymerase II (Pol II) release kinetics, arguably owing to accompanying alterations in H3.3 and H2A.Z levels at promoter-flanking nucleosomes, leading to paradoxical changes in gene expression. Owing to this mechanism, the relative activities of the two remodelers potentiate gene promoters toward Pol II-dependent open or PRC2-dependent closed chromatin states. Our results highlight RNA Pol II occupancy as the key parameter in determining the direction of gene expression changes in response to SWI/SNF and NuRD inactivation at gene promoters in mESCs.


Subject(s)
RNA Polymerase II , Transcription Factors , Animals , Mice , RNA Polymerase II/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Histones/metabolism , Nucleosomes/genetics , Gene Expression
3.
Leukemia ; 37(3): 593-605, 2023 03.
Article in English | MEDLINE | ID: mdl-36631623

ABSTRACT

Epigenetic regulators are frequently mutated in hematological malignancies including acute myeloid leukemia (AML). Thus, the identification and characterization of novel epigenetic drivers affecting AML biology holds potential to improve our basic understanding of AML and to uncover novel options for therapeutic intervention. To identify novel tumor suppressive epigenetic regulators in AML, we performed an in vivo short hairpin RNA (shRNA) screen in the context of CEBPA mutant AML. This identified the Histone 3 Lysine 4 (H3K4) demethylase KDM5C as a tumor suppressor, and we show that reduced Kdm5c/KDM5C expression results in accelerated growth both in human and murine AML cell lines, as well as in vivo in Cebpa mutant and inv(16) AML mouse models. Mechanistically, we show that KDM5C act as a transcriptional repressor through its demethylase activity at promoters. Specifically, KDM5C knockdown results in globally increased H3K4me3 levels associated with up-regulation of bivalently marked immature genes. This is accompanied by a de-differentiation phenotype that could be reversed by modulating levels of several direct and indirect downstream mediators. Finally, the association of KDM5C levels with long-term disease-free survival of female AML patients emphasizes the clinical relevance of our findings and identifies KDM5C as a novel female-biased tumor suppressor in AML.


Subject(s)
Histone Demethylases , Leukemia, Myeloid, Acute , Animals , Female , Humans , Mice , Cell Differentiation , Cell Line , Clinical Relevance , Histone Demethylases/genetics , Leukemia, Myeloid, Acute/genetics
4.
Nat Commun ; 13(1): 3595, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739121

ABSTRACT

Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.


Subject(s)
Gene Expression Regulation , Transcription Factors , Animals , Cell Cycle , Cell Differentiation/genetics , Granulocytes/metabolism , Mammals/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cell Rep ; 39(6): 110793, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545054

ABSTRACT

Ribosomopathies constitute a range of disorders associated with defective protein synthesis mainly affecting hematopoietic stem cells (HSCs) and erythroid development. Here, we demonstrate that deletion of poly-pyrimidine-tract-binding protein 1 (PTBP1) in the hematopoietic compartment leads to the development of a ribosomopathy-like condition. Specifically, loss of PTBP1 is associated with decreases in HSC self-renewal, erythroid differentiation, and protein synthesis. Consistent with its function as a splicing regulator, PTBP1 deficiency results in splicing defects in hundreds of genes, and we demonstrate that the up-regulation of a specific isoform of CDC42 partly mimics the protein-synthesis defect associated with loss of PTBP1. Furthermore, PTBP1 deficiency is associated with a marked defect in ribosome biogenesis and a selective reduction in the translation of mRNAs encoding ribosomal proteins. Collectively, this work identifies PTBP1 as a key integrator of ribosomal functions and highlights the broad functional repertoire of RNA-binding proteins.


Subject(s)
Hematopoietic Stem Cells , Ribosomes , Erythrocytes/metabolism , Erythropoiesis , Hematopoietic Stem Cells/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism
6.
Sci Adv ; 8(11): eabf8627, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35302840

ABSTRACT

Activation of interferon genes constitutes an important anticancer pathway able to restrict proliferation of cancer cells. Here, we demonstrate that the H3K9me3 histone methyltransferase (HMT) suppressor of variegation 3-9 homolog 1 (SUV39H1) is required for the proliferation of acute myeloid leukemia (AML) and find that its loss leads to activation of the interferon pathway. Mechanistically, we show that this occurs via destabilization of a complex composed of SUV39H1 and the two H3K9me2 HMTs, G9A and GLP. Indeed, loss of H3K9me2 correlated with the activation of key interferon pathway genes, and interference with the activities of G9A/GLP largely phenocopied loss of SUV39H1. Last, we demonstrate that inhibition of G9A/GLP synergized with DNA demethylating agents and that SUV39H1 constitutes a potential biomarker for the response to hypomethylation treatment. Collectively, we uncovered a clinically relevant role for H3K9me2 in safeguarding cancer cells against activation of the interferon pathway.

7.
Haematologica ; 106(4): 1000-1007, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32381577

ABSTRACT

ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knock-in mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, p.G643WfsX12. Mutant mice did not display any major hematopoietic defects nor developed any apparent hematological disease. In AML patients, ASXL1 mutations co-occur with mutations in CEBPA and we therefore generated compound Cebpa and Asxl1 mutated mice. Using a transplantation model, we found that the mutated Asxl1 allele significantly accelerated disease development in a CEBPA mutant context. Importantly, we demonstrated that, similar to the human setting, Asxl1 mutated mice responded poorly to chemotherapy. This model therefore constitutes an excellent experimental system for further studies into the clinically important question of chemotherapy resistance mediated by mutant ASXL1.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Animals , CCAAT-Enhancer-Binding Proteins , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mutation , Myelodysplastic Syndromes/genetics , Repressor Proteins/genetics
8.
iScience ; 23(4): 101008, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32268280

ABSTRACT

HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11. Paralogous CNEs underwent compensatory mutations, exhibit sequence complementarity with respect to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-expressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans. We propose a dual modality of HOTAIR regulation where transcription of HOTAIR and its embedded enhancer regulates HOXC11 in cis and sequence complementarity between paralogous CNEs suggests HOXD11 regulation in trans.

9.
Sci Adv ; 5(7): eaaw4304, 2019 07.
Article in English | MEDLINE | ID: mdl-31309149

ABSTRACT

The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human CEBPA mutant AML and the corresponding Cebpa Lp30 mouse model, we identified Nt5e, encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target.


Subject(s)
5'-Nucleotidase/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation , Animals , Binding Sites , CCAAT-Enhancer-Binding Proteins/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , GPI-Linked Proteins/genetics , Gene Expression Profiling , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Nucleotide Motifs , Prognosis , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics
10.
Nat Commun ; 10(1): 172, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635567

ABSTRACT

Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in acute myeloid leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that "non-mutated" splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This has led to the identification of the splicing regulator RBM25 as a novel tumor suppressor. In multiple human leukemic cell lines, knockdown of RBM25 promotes proliferation and decreases apoptosis. Mechanistically, we show that RBM25 controls the splicing of key genes, including those encoding the apoptotic regulator BCL-X and the MYC inhibitor BIN1. This mechanism is also operative in human AML patients where low RBM25 levels are associated with high MYC activity and poor outcome. Thus, we demonstrate that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Experimental/metabolism , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA Recognition Motif Proteins/metabolism , RNA Splicing Factors/metabolism , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Female , Humans , Leukemia, Myeloid, Acute/mortality , Mice , Nerve Tissue Proteins/metabolism , Nuclear Proteins , RNA Splicing , Tumor Suppressor Proteins/metabolism
11.
Front Genet ; 10: 1268, 2019.
Article in English | MEDLINE | ID: mdl-31921306

ABSTRACT

Reprogramming of adipocyte function in obesity is implicated in metabolic disorders like type 2 diabetes. Here, we used the pig, an animal model sharing many physiological and pathophysiological similarities with humans, to perform in-depth epigenomic and transcriptomic characterization of pure adipocyte fractions. Using a combined DNA methylation capture sequencing and Reduced Representation bisulfite sequencing (RRBS) strategy in 11 lean and 12 obese pigs, we identified in 3529 differentially methylated regions (DMRs) located at close proximity to-, or within genes in the adipocytes. By sequencing of the transcriptome from the same fraction of isolated adipocytes, we identified 276 differentially expressed transcripts with at least one or more DMR. These transcripts were over-represented in gene pathways related to MAPK, metabolic and insulin signaling. Using a candidate gene approach, we further characterized 13 genes potentially regulated by DNA methylation and identified putative transcription factor binding sites that could be affected by the differential methylation in obesity. Our data constitute a valuable resource for further investigations aiming to delineate the epigenetic etiology of metabolic disorders.

12.
Cell Rep ; 24(3): 766-780, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30021172

ABSTRACT

Hematopoietic stem cells (HSCs) are considered a heterogeneous cell population. To further resolve the HSC compartment, we characterized a retinoic acid (RA) reporter mouse line. Sub-fractionation of the HSC compartment in RA-CFP reporter mice demonstrated that RA-CFP-dim HSCs were largely non-proliferative and displayed superior engraftment potential in comparison with RA-CFP-bright HSCs. Gene expression analysis demonstrated higher expression of RA-target genes in RA-CFP-dim HSCs, in contrast to the RA-CFP reporter expression, but both RA-CFP-dim and RA-CFP-bright HSCs responded efficiently to RA in vitro. Single-cell RNA sequencing (RNA-seq) of >1,200 HSCs showed that differences in cell cycle activity constituted the main driver of transcriptional heterogeneity in HSCs. Moreover, further analysis of the single-cell RNA-seq data revealed that stochastic low-level expression of distinct lineage-affiliated transcriptional programs is a common feature of HSCs. Collectively, this work demonstrates the utility of the RA-CFP reporter line as a tool for the isolation of superior HSCs.


Subject(s)
Cell Compartmentation , Cell Cycle/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Transcription, Genetic , Animals , Cell Cycle/drug effects , Gene Expression Regulation/drug effects , Genes, Reporter , Genome , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Luminescent Proteins/metabolism , Mice , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Transcriptome/genetics , Tretinoin/pharmacology
13.
Cell Rep ; 23(9): 2744-2757, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29847803

ABSTRACT

Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation.


Subject(s)
CCAAT-Enhancer-Binding Proteins/deficiency , Cell Differentiation/genetics , Enhancer Elements, Genetic/genetics , Myeloid Cells/cytology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Base Sequence , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line , Cell Lineage , Chromatin/metabolism , Female , Gene Expression Regulation , Granulocytes/cytology , Granulocytes/metabolism , Mice , Monocytes/cytology , Monocytes/metabolism , Myeloid Cells/metabolism , Protein Binding
14.
Nucleic Acids Res ; 44(9): 4037-51, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27095194

ABSTRACT

Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare.


Subject(s)
Computational Biology/methods , Enhancer Elements, Genetic/genetics , Histone Code/genetics , Histones/metabolism , Promoter Regions, Genetic/genetics , Binding Sites/genetics , Cell Differentiation/genetics , Cell Line, Tumor , HeLa Cells , Hematopoietic Stem Cells/cytology , Hep G2 Cells , Humans , Nucleosomes/genetics , Transcriptional Activation
15.
Nucleic Acids Res ; 44(D1): D917-24, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26507857

ABSTRACT

Research on human and murine haematopoiesis has resulted in a vast number of gene-expression data sets that can potentially answer questions regarding normal and aberrant blood formation. To researchers and clinicians with limited bioinformatics experience, these data have remained available, yet largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan-Meier analysis and a hierarchical tree depicting the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from six independent studies on acute myeloid leukemia. Furthermore, we have devised a robust sample integration procedure that allows for sensitive comparison of user-supplied patient samples in a well-defined haematopoietic cellular space.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Hematopoiesis/genetics , Leukemia, Myeloid, Acute/genetics , Transcription, Genetic , Animals , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice
16.
Sci Rep ; 5: 12062, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26166713

ABSTRACT

Post-transcriptional processing events related to short RNAs are often reflected in their read profile patterns emerging from high-throughput sequencing data. MicroRNA arm switching across different tissues is a well-known example of what we define as differential processing. Here, short RNAs from the nine cell lines of the ENCODE project, irrespective of their annotation status, were analyzed for genomic loci representing differential or coherent processing. We observed differential processing predominantly in RNAs annotated as miRNA, snoRNA or tRNA. Four out of five known cases of differentially processed miRNAs that were in the input dataset were recovered and several novel cases were discovered. In contrast to differential processing, coherent processing is observed widespread in both annotated and unannotated regions. While the annotated loci predominantly consist of ~24 nt short RNAs, the unannotated loci comparatively consist of ~17 nt short RNAs. Furthermore, these ~17 nt short RNAs are significantly enriched for overlap to transcription start sites and DNase I hypersensitive sites (p-value < 0.01) that are characteristic features of transcription initiation RNAs. We discuss how the computational pipeline developed in this study has the potential to be applied to other forms of RNA-seq data for further transcriptome-wide studies of differential and coherent processing.


Subject(s)
MicroRNAs/genetics , RNA, Transfer/genetics , Cell Line , High-Throughput Nucleotide Sequencing/instrumentation , Humans , RNA Processing, Post-Transcriptional/genetics , RNA, Small Nucleolar/genetics , Sequence Analysis, RNA/methods , Transcription Initiation Site/physiology , Transcriptome/genetics
17.
Front Genet ; 6: 188, 2015.
Article in English | MEDLINE | ID: mdl-26042150

ABSTRACT

Functional annotation of the genome is important to understand the phenotypic complexity of various species. The road toward functional annotation involves several challenges ranging from experiments on individual molecules to large-scale analysis of high-throughput sequencing (HTS) data. HTS data is typically a result of the protocol designed to address specific research questions. The sequencing results in reads, which when mapped to a reference genome often leads to the formation of distinct patterns (read profiles). Interpretation of these read profiles is essential for their analysis in relation to the research question addressed. Several strategies have been employed at varying levels of abstraction ranging from a somewhat ad hoc to a more systematic analysis of read profiles. These include methods which can compare read profiles, e.g., from direct (non-sequence based) alignments to classification of patterns into functional groups. In this review, we highlight the emerging applications of read profiles for the annotation of non-coding RNA and cis-regulatory elements (CREs) such as enhancers and promoters. We also discuss the biological rationale behind their formation.

18.
Database (Oxford) ; 2014: bau120, 2014.
Article in English | MEDLINE | ID: mdl-25534749

ABSTRACT

Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs--the potential for generating consumer specific scents being one of the most attractive and interesting topics in the cosmetic industry. Database URL: http://nipgr.res.in/Essoildb/


Subject(s)
Databases, Factual , Oils, Volatile/metabolism , Plants/metabolism , Terpenes/metabolism , Plants/genetics , Stress, Physiological , Terpenes/analysis
19.
BMC Genomics ; 15: 459, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24917120

ABSTRACT

BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). CONCLUSIONS: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at http://rth.dk/resources/rnannotator/susscr102/version1.02.


Subject(s)
Genome , RNA/metabolism , Swine/genetics , Animals , Cluster Analysis , Genetic Loci , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA/chemistry , RNA/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Synteny/genetics
20.
Gene ; 545(1): 80-7, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24797614

ABSTRACT

The Cd247 gene encodes for a transmembrane protein important for the expression and assembly of TCR/CD3 complex on the surface of T lymphocytes. Down-regulation of CD247 has functional consequences in systemic autoimmunity and has been shown to be associated with Type 1 Diabetes in NOD mouse. In this study, we have utilized the wealth of high-throughput sequencing data produced during the Encyclopedia of DNA Elements (ENCODE) project to identify spatially conserved regulatory elements within the Cd247 gene from human and mouse. We show the presence of two transcription factor binding sites, supported by histone marks and ChIP-seq data, that specifically have features of an enhancer and a promoter, respectively. We also identified a putative long non-coding RNA from the characteristically long first intron of the Cd247 gene. The long non-coding RNA annotation is supported by manual annotations from the GENCODE project in human and our expression quantification analysis performed in NOD and B6 mice using qRT-PCR. Furthermore, 17 of the 23 SNPs already known to be implicated with T1D were observed within the long non-coding RNA region in mouse. The spatially conserved regulatory elements identified in this study have the potential to enrich our understanding of the role of Cd247 gene in autoimmune diabetes.


Subject(s)
CD3 Complex/genetics , RNA, Long Noncoding , Regulatory Sequences, Nucleic Acid , Animals , Base Sequence , Binding Sites , Conserved Sequence , Evolution, Molecular , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...