Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38592798

ABSTRACT

The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.

2.
Phytopathology ; 114(2): 393-404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37581435

ABSTRACT

Peanuts grown in tropical, subtropical, and temperate regions are susceptible to stem rot, which is a soilborne disease caused by Athelia rolfsii. Due to the lack of reliable environmental-based scheduling recommendations, stem rot control relies heavily on fungicides that are applied at predetermined intervals. We conducted inoculated field experiments for six site-years in North Florida to examine the relationship between germination of A. rolfsii sclerotia: the inoculum, stem rot symptom development in the peanut crop, and environmental factors such as soil temperature (ST), soil moisture, relative humidity (RH), precipitation, evapotranspiration, and solar radiation. Window-pane analysis with hourly and daily environmental data for 5- to 28-day periods before each disease assessment were evaluated to select model predictors using correlation analysis, regularized regression, and exhaustive feature selection. Our results indicated that within-canopy ST (at 0.05 m belowground) and RH (at 0.15 m aboveground) were the most important environmental variables that influenced the progress of mycelial activity in susceptible peanut crops. Decision tree analysis resulted in an easy-to-interpret one-variable model (adjusted R2 = 0.51, Akaike information criterion [AIC] = 324, root average square error [RASE] = 14.21) or two-variable model (adjusted R2 = 0.61, AIC = 306, RASE = 10.95) that provided an action threshold for various disease scenarios based on number of hours of canopy RH above 90% and ST between 25 and 35°C in a 14-day window. Coupling an existing preseason risk index for stem rot, such as Peanut Rx, with the environmentally based predictors identified in this study would be a logical next step to optimize stem rot management. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Arachis , Plant Diseases , Plant Diseases/prevention & control , Crops, Agricultural , Soil , Disease Management
3.
Phytopathology ; 114(1): 126-136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37531626

ABSTRACT

Athelia rolfsii, causal agent of "southern blight" disease, is a soilborne fungal pathogen with a wide host range of more than 500 species. This study's objectives were to (i) quantify the effects of two environmental factors, temperature and soil moisture, on germination of A. rolfsii inoculum (sclerotia), which is a critical event for the onset of disease epidemics and (ii) predict the timing of sclerotial germination by applying population-based threshold-type hydrothermal time (HTT) models. We conducted in vitro germination experiments with three isolates of A. rolfsii isolated from peanuts, which were tested at five temperatures (T), ranging from 17 to 40°C, four matric potentials (Ψm) between -0.12 and -1.57 MPa, and two soil types (fine sand and loamy fine sand), using a factorial design. When Ψm was maintained between -0.12 and -0.53 MPa, T from 22 to 34°C was found to be conducive to sclerotial germination (>50%). The HTT models were fitted for a range of T (22 to 34°C) and Ψm (-0.12 to -1.57 MPa) that accounted for 84% or more of variation in the timing of sclerotial germination. The estimated base T ranged between 0 and 4.5°C and the estimated base Ψm between -2.96 and -1.52 MPa. The results suggest that the HTT modeling approach is a suitable means of predicting the timing of A. rolfsii sclerotial germination. This HTT methodology can potentially be tested to fine-tune fungicide application timing and in-season A. rolfsii management strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Ascomycota , Basidiomycota , Germination , Sand , Plant Diseases/microbiology , Soil
4.
Front Microbiol ; 14: 1278189, 2023.
Article in English | MEDLINE | ID: mdl-37928692

ABSTRACT

Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.

5.
Front Microbiol ; 14: 1192035, 2023.
Article in English | MEDLINE | ID: mdl-37383630

ABSTRACT

Total yeast and mold (TYM) levels in inflorescences of high THC-containing Cannabis sativa (cannabis) are regulated to ensure that medicinal and recreational users, especially those with immunocompromised systems, are not exposed to potentially harmful levels. In North America, the limits imposed range from 1,000-10,000 cfu/g of dried product to 50,000-100,000 cfu/g, depending on the jurisdiction. Factors affecting a build-up of TYM in cannabis inflorescences have not been previously researched. In this study, >2,000 fresh and dried samples were assayed for TYM over a 3-year period (2019-2022) to identify specific factors which can contribute to TYM levels. Greenhouse-grown inflorescences were sampled before and after commercial harvest, homogenized for 30 s, and plated onto potato dextrose agar (PDA) with 140 mg/L streptomycin sulfate. Colony-forming-units (cfu) were rated after 5 days of incubation at 23°C under 10-14 h light. PDA provided more consistent counts of cfu compared to Sabouraud dextrose and tryptic soy agars. The predominant fungal genera identified by PCR of the ITS1-5.8S-ITS2 region of rDNA were Penicillium, Aspergillus, Cladosporium, and Fusarium. In addition, four yeast genera were recovered. In total, 21 species of fungi and yeasts constituted the total cfu present in the inflorescences. The variables that significantly (p < 0.05) increased these TYM levels in inflorescences were: the genotype (strain) grown, presence of leaf litter in the greenhouse, harvesting activity by workers, genotypes with a higher abundance of stigmatic tissues and inflorescence leaves, higher temperature and relative humidity within the inflorescence microclimate, time of year (May-October), method of drying buds after harvest, and inadequate drying of buds. The variables which significantly (p < 0.05) decreased TYM in samples were: genotypes with lower numbers of inflorescence leaves, air circulation achieved by fans during inflorescence maturation, harvesting during November-April, hang-drying of entire inflorescence stems, and drying to a moisture content of 12-14% (water activity of 0.65-0.7) or lower which was inversely correlated with cfu levels. Under these conditions, the majority of dried commercial cannabis samples contained <1,000-5,000 cfu/g. Our findings indicate that TYM in cannabis inflorescences are the result of a dynamic interaction between genotype, environment, and post-harvest handling methods. Some of these factors may be altered by cannabis producers to reduce the potential build-up of these microbes. Among the 21 fungal and yeast species recovered from greenhouse-grown cannabis inflorescences, a few could pose a potential threat to human health, while many do not and they could provide beneficial interactions within the cannabis plant. The currently recommended plating methods onto agar media and enumeration of total cfu are unable to distinguish between these two groups.

6.
J Cannabis Res ; 5(1): 12, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016398

ABSTRACT

BACKGROUND: Glandular capitate trichomes which form on bract tissues of female inflorescences of high THC-containing Cannabis sativa L. plants are important sources of terpenes and cannabinoids. The influence of plant age and cannabis genotype on capitate trichome development, morphology, and maturation has not been extensively studied. Knowledge of the various developmental changes that occur in trichomes over time and the influence of genotype and plant age on distribution, numbers, and morphological features should lead to a better understanding of cannabis quality and consistency. METHODS: Bract tissues of two genotypes-"Moby Dick" and "Space Queen"-were examined from 3 weeks to 8 weeks of flower development using light and scanning electron microscopy. Numbers of capitate trichomes on upper and lower bract surfaces were recorded at different positions within the inflorescence. Observations on distribution, extent of stalk formation, glandular head diameter, production of resin, and extent of dehiscence and senescence were made at various time points. The effects of post-harvesting handling and drying on trichome morphology were examined in an additional five genotypes. RESULTS: Two glandular trichome types-bulbous and capitate (sessile or stalked)-were observed. Capitate trichome numbers and stalk length were significantly (P = 0.05) greater in "Space Queen" compared to "Moby Dick" at 3 and 6 weeks of flower development. Significantly more stalked-capitate trichomes were present on lower compared to upper bract surfaces at 6 weeks in both genotypes, while sessile-capitate trichomes predominated at 3 weeks. Epidermal and hypodermal cells elongated to different extents during stalk formation, producing significant variation in length (from 20 to 1100 µm). Glandular heads ranged from 40 to 110 µm in diameter. Maturation of stalked-capitate glandular heads was accompanied by a brown color development, reduced UV autofluorescence, and head senescence and dehiscence. Secreted resinous material from glandular heads appeared as droplets on the cuticular surface that caused many heads to stick together or collapse. Trichome morphology was affected by the drying process. CONCLUSION: Capitate trichome numbers, development, and degree of maturation were influenced by cannabis genotype and plant age. The observations of trichome development indicate that asynchronous formation leads to different stages of trichome maturity on bracts. Trichome stalk lengths also varied between the two genotypes selected for study as well as over time. The variability in developmental stage and maturation between genotypes can potentially lead to variation in total cannabinoid levels in final product. Post-harvest handling and drying were shown to affect trichome morphology.

7.
Plant Dis ; 107(3): 784-793, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35947008

ABSTRACT

Phytophthora root rot and wilting complex (PRRW) of red raspberry, caused primarily by Phytophthora rubi, is an economically important disease in British Columbia (BC) and in raspberry producing regions globally. Reliable, rapid, and efficient screening methods are lacking for evaluating germplasm for potential disease resistance in raspberry breeding programs as well as for screening pathogen isolates for virulence. The objective of this study was to compare various screening methods for efficiency and rapidity in inducing symptoms of disease to identify the most suitable approach. We compared several intact plant root inoculation (IPRI) assays, detached stem assays, and an intact plant stem inoculation (IPSI) assay. A virulent isolate of P. rubi was inoculated in two commercial cultivars: 'Chemainus' (susceptible to PRRW) and 'Cascade Bounty' (moderately resistant to PRRW). For IPRI assays, days to first symptom development, plant wilt progression, and root assessment were recorded. For detached stem tissue and IPSI assays, days to first visible lesions and lesion size were assessed. Experiments were arranged in a completely randomized design with three replications in each experiment. Three IPRI assays produced reliable symptoms in both cultivars. Among the detached stem assays, a node inoculation method performed better than other methods. Detached stem assays are useful for rapid pathogenicity testing of P. rubi, whereas IPRI assays are better for screening germplasm for disease resistance. Overall, this study identified several assays that can be used for conducting studies on pathogen phenotypic diversity (pathogenicity and virulence tests) and screening raspberry cultivars, germplasm, and breeding materials for response to PRRW.


Subject(s)
Phytophthora , Plant Diseases , Rubus , Disease Resistance , Phytophthora/pathogenicity , Plant Breeding , Plant Diseases/microbiology , Rubus/microbiology , Virulence
8.
Int J Mol Sci ; 25(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38203190

ABSTRACT

The increased cultivation of Cannabis sativa L. in North America, represented by high Δ9-tetrahydrocannabinol-containing (high-THC) cannabis genotypes and low-THC-containing hemp genotypes, has been impacted by an increasing number of plant pathogens. These include fungi which destroy roots, stems, and leaves, in some cases causing a build-up of populations and mycotoxins in the inflorescences that can negatively impact quality. Viroids and viruses have also increased in prevalence and severity and can reduce plant growth and product quality. Rapid diagnosis of the occurrence and spread of these pathogens is critical. Techniques in the area of molecular diagnostics have been applied to study these pathogens in both cannabis and hemp. These include polymerase chain reaction (PCR)-based technologies, including RT-PCR, multiplex RT-PCR, RT-qPCR, and ddPCR, as well as whole-genome sequencing (NGS) and bioinformatics. In this study, examples of how these technologies have enhanced the rapidity and sensitivity of pathogen diagnosis on cannabis and hemp will be illustrated. These molecular tools have also enabled studies on the diversity and origins of specific pathogens, specifically viruses and viroids, and these will be illustrated. Comparative studies on the genomics and metabolomics of healthy and diseased plants are urgently needed to provide insight into their impact on the quality and composition of cannabis and hemp-derived products. Management of these pathogens will require monitoring of their spread and survival using the appropriate technologies to allow accurate detection, followed by appropriate implementation of disease control measures.


Subject(s)
Cannabis , Hallucinogens , Cannabis/genetics , Pathology, Molecular , Computational Biology , Genomics , Cannabinoid Receptor Agonists
9.
PLoS One ; 17(11): e0275384, 2022.
Article in English | MEDLINE | ID: mdl-36417394

ABSTRACT

Phytophthora species are primary causal agents of raspberry root rot and wilting complex (RRWC), a disease complex that is of major concern to raspberry producers worldwide. Accurate identification of the causal agents is a first step for effective disease management. Advancements in molecular diagnostics can facilitate the detection of multiple pathogen species associated with this disease complex. We developed multiplex targeted-sequencing methods using degenerate primers for heat shock protein 90, elongation factor 1α and ß-tubulin genes to identify Phytophthora species causing RRWC. One hundred and twenty-eight isolates recovered during 2018 to 2020 from diverse fields in major raspberry growing areas of British Columbia (BC) were sequenced and identified by comparing with known reference sequences of 142 Phytophthora species, 111 Pythium species, and nine Phytopythium species in the NCBI database. This multiplex targeted-sequencing method was highly specific and identified two species of Phytophthora associated with RRWC. These were P. rubi (85% of isolates) and P. gonapodyides (15% of isolates). Phytophthora rubi was predominantly isolated from the cultivars 'Chemainus' (51%), 'Rudi' (27%) and 'Meeker' (15%), whereas P. gonapodyides was predominately isolated from the moderately resistant cultivar 'Cascade Bounty'. Pathogenicity studies on intact plants and detached leaves confirmed that P. rubi and P. gonapodyides can cause symptoms of RRWC on raspberry, thus fulfilling Koch's postulates. To our knowledge, this is the first report of P. gonapodyides as a causal agent of RRWC on raspberry in BC. This study provides novel insights into the identification and species composition of Phytophthora associated with RRWC in raspberry production systems.


Subject(s)
Phytophthora , Pythium , Rubus , Plant Diseases , Plants
10.
Front Plant Sci ; 12: 732344, 2021.
Article in English | MEDLINE | ID: mdl-34621286

ABSTRACT

Tissue culture approaches are widely used in crop plants for the purposes of micropropagation, regeneration of plants through organogenesis, obtaining pathogen-free plantlets from meristem culture, and developing genetically modified plants. In this research, we evaluated variables that can influence the success of shoot growth and plantlet production in tissue cultures of drug-type Cannabis sativa L. (marijuana). Various sterilization methods were tested to ensure shoot development from nodal explants by limiting the frequency of contaminating endophytes, which otherwise caused the death of explants. Seven commercially grown tetrahydrocannabinol (THC)-containing cannabis genotypes (strains) showed significant differences in response to shoot growth from meristems and nodal explants on Murashige and Skoog (MS) medium containing thidiazuron (1 µM) and naphthaleneacetic acid (0.5 µM) plus 1% activated charcoal. The effect of Driver and Kuniyuki Walnut (DKW) or MS basal salts in media on shoot length and leaf numbers from nodal explants was compared and showed genotype dependency with regard to the growth response. To obtain rooted plantlets, shoots from meristems and nodal explants of genotype Moby Dick were evaluated for rooting, following the addition of sodium metasilicate, silver nitrate, indole-3-butyric acid (IBA), kinetin, or 2,4-D. Sodium metasilicate improved the visual appearance of the foliage and improved the rate of rooting. Silver nitrate also promoted rooting. Following acclimatization, plantlet survival in hydroponic culture, peat plugs, and rockwool substrate was 57, 76, and 83%, respectively. The development of plantlets from meristems is described for the first time in C. sativa and has potential for obtaining pathogen-free plants. The callogenesis response of leaf explants of 11 genotypes on MS medium without activated charcoal was 35% to 100%, depending on the genotype; organogenesis was not observed. The success in recovery of plantlets from meristems and nodal explants is influenced by cannabis genotype, degree of endophytic contamination of the explants, and frequency of rooting. The procedures described here have potential applications for research and commercial utility to obtain plantlets in stage 1 tissue cultures of C. sativa.

11.
Pest Manag Sci ; 77(9): 3857-3870, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33527549

ABSTRACT

Cultivation of cannabis plants (Cannabis sativa L., marijuana) has taken place worldwide for centuries. In Canada, legalization of cannabis in October 2018 for the medicinal and recreational markets has spurned interest in large-scale growing. This increased production has seen a rise in the incidence and severity of plant pathogens, causing a range of previously unreported diseases. The objective of this review is to highlight the important diseases currently affecting the cannabis and hemp industries in North America and to discuss various mitigation strategies. Progress in molecular diagnostics for pathogen identification and determining inoculum sources and methods of pathogen spread have provided useful insights. Sustainable disease management approaches include establishing clean planting stock, modifying environmental conditions to reduce pathogen development, implementing sanitation measures, and applying fungal and bacterial biological control agents. Fungicides are not currently registered for use and hence there are no published data on their efficacy. The greatest challenge remains in reducing microbial loads (colony-forming units) on harvested inflorescences (buds). Contaminating microbes may be introduced during the cultivation and postharvest phases, or constitute resident endophytes. Failure to achieve a minimum threshold of microbes deemed to be safe for utilization of cannabis products can arise from conventional and organic cultivation methods, or following applications of beneficial biocontrol agents. The current regulatory process for approval of cannabis products presents a challenge to producers utilizing biological control agents for disease management. © 2021 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Cannabis , Bacteria , Biological Control Agents , Endophytes , Fungi
12.
Phytopathology ; 111(7): 1137-1151, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33174819

ABSTRACT

Biological control of plant diseases is important in organic greenhouse vegetable production, where fungicide use is limited. Organic producers use microbially diverse substrates, including composts, as media for plant growth. Previous research into the impact of vermicompost on the efficacy of applied biocontrol agents is limited. An in vitro assay was developed to test the efficacy of two biological control agents in a competitive microbial background. Suppression of the pathogen Fusarium oxysporum f. sp. radicis-cucumerinum by Clonostachys rosea f. catenulata (Gliocladium catenulatum strain J1446 [Prestop]) and Bacillus subtilis strain QST 713 (Rhapsody), was assessed on agar media amended with aerated vermicompost tea (ACT). Pathogen growth was reduced more by C. rosea than ACT alone, and C. rosea was equally effective when combined with ACT. In contrast, B. subtilis reduced pathogen growth less than ACT and, when combined, reduced pathogen growth no more than ACT alone. Both biocontrol agents were similarly tested with ACT against F. oxysporum f. sp. radicis-cucumerinum and Rhizoctonia solani on cucumber and radish. Additive, neutral, and antagonistic responses, depending on host, pathogen, and biocontrol agent, were observed. ACT alone provided more consistent disease suppression on cucumber compared with B. subtilis or C. rosea. In combination, disease suppression was most often better than each biocontrol alone but not better than ACT alone. ACT had antagonistic or additive interactions with C. rosea in the radish/R. solani pathosystem, depending on the experiment. The specific and general suppression of plant diseases by biological control agents in microbially rich environments is variable and warrants further study.


Subject(s)
Fusarium , Biological Control Agents , Hypocreales , Plant Diseases/prevention & control , Rhizoctonia , Tea
13.
Front Plant Sci ; 11: 718, 2020.
Article in English | MEDLINE | ID: mdl-32670310

ABSTRACT

Cannabis sativa L. (hemp, marijuana) produces male and female inflorescences on different plants (dioecious) and therefore the plants are obligatory out-crossers. In commercial production, marijuana plants are all genetically female; male plants are destroyed as seed formation reduces flower quality. Spontaneously occurring hermaphroditic inflorescences, in which pistillate flowers are accompanied by formation of anthers, leads to undesired seed formation; the mechanism for this is poorly understood. We studied hermaphroditism in several marijuana strains with three objectives: (i) to compare the morphological features of this unique phenotype with normal male flowers; (ii) to assess pollen and seed viability from hermaphroditic flowers; and (iii) to assess the effect of hermaphroditism on progeny male:female (sex) ratios and on genetic variation using molecular methods. The morphological features of anthers, pollen production and germination in hermaphroditic flowers and in staminate inflorescences on male plants were compared using light and scanning electron microscopy. Seeds produced on hermaphroditic plants and seeds derived from cross-fertilization were germinated and seedlings were compared for gender ratios using a PCR-based assay as well as for the extent of genetic variation using six ISSR primers. Nei's index of gene diversity and Shannon's Information index were compared for these two populations. The morphology of anthers and pollen formation in hermaphroditic inflorescences was similar to that in staminate flowers. Seedlings from hermaphroditic seeds, and anther tissues, showed a female genetic composition while seedlings derived from cross-fertilized seeds showed a 1:1 male:female sex expression ratio. Uniquely, hermaphroditic inflorescences produced seeds which gave rise only to genetically female plants. In PCR assays, a 540 bp size fragment was present in male and female plants, while a 390 bp band was uniquely associated with male plants. Sequence analysis of these fragments revealed the presence of Copia-like retrotransposons within the C. sativa genome which may be associated with the expression of male or female phenotype. In ISSR analysis, the percentage of polymorphic loci ranged from 44 to 72% in hermaphroditic and cross-fertilized populations. Nei's index of gene diversity and Shannon's Information index were not statistically different for both populations. The extent of genetic variation after one generation of selfing in the progeny from hermaphroditic seed is similar to that in progeny from cross-fertilized seeds.

14.
Front Plant Sci ; 10: 1120, 2019.
Article in English | MEDLINE | ID: mdl-31681341

ABSTRACT

Plant pathogens infecting marijuana (Cannabis sativa L.) plants reduce growth of the crop by affecting the roots, crown, and foliage. In addition, fungi (molds) that colonize the inflorescences (buds) during development or after harvest, and which colonize internal tissues as endophytes, can reduce product quality. The pathogens and molds that affect C. sativa grown hydroponically indoors (in environmentally controlled growth rooms and greenhouses) and field-grown plants were studied over multiple years of sampling. A PCR-based assay using primers for the internal transcribed spacer region (ITS) of ribosomal DNA confirmed identity of the cultures. Root-infecting pathogens included Fusarium oxysporum, Fusarium solani, Fusarium brachygibbosum, Pythium dissotocum, Pythium myriotylum, and Pythium aphanidermatum, which caused root browning, discoloration of the crown and pith tissues, stunting and yellowing of plants, and in some instances, plant death. On the foliage, powdery mildew, caused by Golovinomyces cichoracearum, was the major pathogen observed. On inflorescences, Penicillium bud rot (caused by Penicillium olsonii and Penicillium copticola), Botrytis bud rot (Botrytis cinerea), and Fusarium bud rot (F. solani, F. oxysporum) were present to varying extents. Endophytic fungi present in crown, stem, and petiole tissues included soil-colonizing and cellulolytic fungi, such as species of Chaetomium, Trametes, Trichoderma, Penicillium, and Fusarium. Analysis of air samples in indoor growing environments revealed that species of Penicillium, Cladosporium, Aspergillus, Fusarium, Beauveria, and Trichoderma were present. The latter two species were the result of the application of biocontrol products for control of insects and diseases, respectively. Fungal communities present in unpasteurized coconut (coco) fiber growing medium are potential sources of mold contamination on cannabis plants. Swabs taken from greenhouse-grown and indoor buds pre- and post-harvest revealed the presence of Cladosporium and up to five species of Penicillium, as well as low levels of Alternaria species. Mechanical trimming of buds caused an increase in the frequency of Penicillium species, presumably by providing entry points through wounds or spreading endophytes from pith tissues. Aerial distribution of pathogen inoculum and mold spores and dissemination through vegetative propagation are important methods of spread, and entry through wound sites on roots, stems, and bud tissues facilitates pathogen establishment on cannabis plants.

15.
Methods Mol Biol ; 1224: 59-66, 2015.
Article in English | MEDLINE | ID: mdl-25416249

ABSTRACT

Plants are susceptible to infection by a broad range of fungal pathogens. A range of proteins have been evaluated that can enhance tolerance to these pathogens by heterologous expression in transgenic carrot tissues. The protocols for carrot transformation with Arabidopsis NPR1 (Non-Expressor of Pathogenesis-Related Proteins 1) are described in this chapter, using the herbicide resistance gene bar, which encodes phosphinothricin acetyltransferase, as a selectable marker. In this protocol, petiole segments (0.5-1.0 cm long) from aseptically grown carrot seedlings are exposed to Agrobacterium tumefaciens strain LBA4404 for 10-30 min and cocultivated for 2-3 days. Herbicide selection is then imposed for 8-12 weeks on a series of different tissue culture media until embryogenic calli are produced. The transfer of the embryogenic calli to hormone-free medium results in embryo development which eventually gives rise to transgenic plantlets. Embryogenic calli can also be propagated in suspension cultures. This protocol has yielded transgenic carrot plants with defined T-DNA inserts at the rate of between 1 and 3 Southern-positive independent events out of 100.


Subject(s)
Daucus carota/growth & development , Daucus carota/genetics , Genetic Engineering/methods , Transformation, Genetic , Acetyltransferases/genetics , Agrobacterium tumefaciens/genetics , Arabidopsis Proteins/genetics , Herbicide Resistance/genetics , Sterilization
16.
Methods Mol Biol ; 1224: 319-29, 2015.
Article in English | MEDLINE | ID: mdl-25416268

ABSTRACT

Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection medium were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines, and the presence of the PMI gene was confirmed using PCR and Southern hybridization. Using this method, an average transformation frequency of 31.23% ± 0.14 was obtained for all transformation experiments, with a range of 15.1-55.3%.


Subject(s)
Cannabis/growth & development , Cannabis/genetics , Genetic Engineering/methods , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/growth & development , Cannabis/cytology , DNA, Plant/genetics , DNA, Plant/isolation & purification , Mannose-6-Phosphate Isomerase/genetics , Nucleic Acid Hybridization , Polymerase Chain Reaction , Tissue Culture Techniques , Transformation, Genetic
17.
J Ginseng Res ; 35(3): 368-74, 2011 Sep.
Article in English | MEDLINE | ID: mdl-23717082

ABSTRACT

American ginseng (Panax quinquefolius L.) is grown in some regions of the USA and Canada and marketed for its health promoting attributes. While cultivation of this plant species has taken place in North America for over 100 years, there are many challenges that need to be addressed. In this article, the current production method used by growers is described and the challenges and opportunities for research on this valuable plant are discussed. These include studies on pharmacological activity, genetic diversity within the species, genetic improvement of currently grown plants, molecular characterization of gene expression, and management of diseases affecting plant productivity. The current research developments in these areas are reviewed and areas requiring further work are summarized. Additional research should shed light on the nature of the bioactive compounds and their clinical effects, and the molecular basis of active ingredient biosynthesis, and provide more uniform genetic material as well as improved plant growth, and potentially reduce losses due to pathogens.

18.
Can J Microbiol ; 56(11): 896-905, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21076480

ABSTRACT

Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.


Subject(s)
Cucumis sativus/microbiology , Fusarium , Plant Diseases/prevention & control , Pseudomonas/physiology , Anti-Bacterial Agents/biosynthesis , Antibiosis , Fluorescence , Fusarium/growth & development , Phloroglucinol/analogs & derivatives , Phloroglucinol/metabolism , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Stems/microbiology , Pseudomonas/genetics , Pseudomonas/growth & development , Pseudomonas fluorescens/growth & development , Soil Microbiology
19.
GM Crops ; 1(4): 199-206, 2010.
Article in English | MEDLINE | ID: mdl-21844674

ABSTRACT

We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available. With an improved understanding of plant signaling pathways in response to a range of other pathogens, such as fungi, additional candidate genes for achieving resistance are being investigated. The potential for engineering plants for resistance against individual devastating diseases or for plants with resistance towards multiple pathogens is discussed in detail.


Subject(s)
Crops, Agricultural/genetics , Genetic Engineering/methods , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Bacteria/genetics , Crops, Agricultural/microbiology , Disease Resistance/genetics , Fungi/growth & development , Plant Diseases/microbiology , Plants, Genetically Modified/microbiology , Transgenes/genetics
20.
Planta ; 231(1): 131-41, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19859731

ABSTRACT

The development of transgenic plants highly resistant to a range of pathogens using traditional signal gene expression strategies has been largely ineffective. Modification of systemic acquired resistance (SAR) through the overexpression of a controlling gene such as NPR1 (non-expressor of PR genes) offers an attractive alternative for augmenting the plants innate defense system. The Arabidopsis (At) NPR1 gene was successfully introduced into 'Nantes Coreless' carrot under control of a CaMV 35S promoter and two independent transgenic lines (NPR1-I and NPR1-XI) were identified by Southern and Northern blot hybridization. Both lines were phenotypically normal compared with non-transformed carrots. Northern analysis did not indicate constitutive or spontaneous induction in carrot cultures of SAR-related genes (DcPR-1, 2, 4, 5 or DcPAL). The duration and intensity of expression of DcPR-1, 2 and 5 genes were greatly increased compared with controls when the lines were treated with purified cell wall fragments of Sclerotinia sclerotiorum as well as with 2,6-dichloroisonicotinic acid. The two lines were challenged with the necrotrophic pathogens Botrytis cinerea, Alternaria radicina and S. sclerotiorum on the foliage and A. radicina on the taproots. Both lines exhibited 35-50% reduction in disease symptoms on the foliage and roots when compared with non-transgenic controls. Leaves challenged with the biotrophic pathogen Erysiphe heraclei or the bacterial pathogen Xanthomonas hortorum exhibited 90 and 80% reduction in disease development on the transgenic lines, respectively. The overexpression of the SAR controlling master switch in carrot tissues offers the ability to control a wide range of different pathogens, for which there is currently little genetic resistance available.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Daucus carota/microbiology , Fungi/physiology , Immunity, Innate/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Alternaria/physiology , Arabidopsis Proteins/metabolism , Botrytis/physiology , Daucus carota/genetics , Daucus carota/immunology , Gene Expression Regulation, Plant , Genes, Plant/genetics , Plant Diseases/genetics , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...