Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(8): 253, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914906

ABSTRACT

Liamocins, a group of high-density glycolipids, are only produced by certain strains of the yeast-like fungi in the genus Aureobasidium. Until now, few studies have focused on the surfactant properties of liamocins produced from the highly diverse tropical strains of Aureobasidium. Therefore, the aims of this research were to screen the liamocin production from tropical strains of Aureobasidium spp. and to characterize their surfactant properties. A total of 41 strains of Thai Aureobasidium spp. were screened for their ability to produce liamocins, and the products were detected using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thin-layer chromatography. Of those strains, 30 strains of Aureobasidium spp. tested were found to produce liamocins with yields ranging from 0.53 to 10.60 g/l. The nature of all crude liamocins was heterogeneous, with different compositions and ratios depending on the yeast strain. These liamocins exhibited relatively high emulsifying activity against vegetable oils tested, with an emulsification index of around 40-50%; the emulsion stability of some liamocins was up to 30 days. The obtained critical micelle concentration values were varied, with those ​​of liamocins produced from A. pullulans, A. melanogenum and A. thailandense falling in ranges from 7.70 to 119.78, 10.73 to > 1,000, and 68.56 to > 1,000 mg/l, respectively. The emulsification activity of liamocins was higher than that of the analytical grade rhamnolipids. These compounds showed strong surface tension reduction in a sodium chloride concentration range of 2-12% (w/v), pH values between 3 and 7, and temperatures between 4 and 121 °C. This is the first report of liamocins produced by A. thailandense.


Subject(s)
Aureobasidium , Glycolipids , Glycolipids/metabolism , Glycolipids/biosynthesis , Glycolipids/chemistry , Aureobasidium/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Thailand , Chromatography, Thin Layer , Plant Oils/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Emulsifying Agents/metabolism , Emulsifying Agents/chemistry , Emulsions
2.
Heliyon ; 9(11): e22107, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034795

ABSTRACT

In an attempt to enhance the value of sugarcane leaf, xylan was extracted and used for xylooligosaccharide (XO) production via enzymatic hydrolysis using xylanase from the black yeast Aureobasidium pullulans. The xylan was extracted from sugarcane leaf using alkali extraction according to the response surface methodology. The highest xylan yield (99.42 ± 4.05 % recovery) was obtained using 14.32 % (w/v) NaOH, 13.25:1 liquid: solid ratio, at 121 °C and 15 lb.in2 for 32 min. Sugar composition and FTIR spectrum analyses confirmed its structure as arabinoxylan. The extracted arabinoxylan had a relatively high molecular weight compared to previous studies. Crude endoxylanase from A. pullulans NRRL 58523 was selected for enzymatic hydrolysis of the xylan. The enzyme hydrolyzed well at 50 °C, pH 4.0 and was relatively stable under this condition (87.38 ± 1.26 % of the activity remained after 60 h). XOs, especially xylobiose and xylotriose, were obtained at the maximum yield of 237.51 ± 17.69 mg/g xylan via endoxylanase hydrolysis under the optimum conditions (50 °C, pH 4.0, 65.31 U/g xylan, 53 h). XOs exhibited species-specific prebiotic activity toward three strains of Lactobacillus spp. but not toward Bifidobacterium spp.

3.
BMC Complement Med Ther ; 23(1): 47, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788545

ABSTRACT

BACKGROUND: Malaria continues to be a global problem due to the limited efficacy of current drugs and the natural products are a potential source for discovering new antimalarial agents. Therefore, the aims of this study were to investigate phytochemical properties, cytotoxic effect, antioxidant, and antiplasmodial activities of Sonchus arvensis L. leaf extracts both in vitro and in vivo. METHODS: The extracts from S. arvensis L. leaf were prepared by successive maceration with n-hexane, ethyl acetate, and ethanol, and then subjected to quantitative phytochemical analysis using standard methods. The antimalarial activities of crude extracts were tested in vitro against Plasmodium falciparum 3D7 strain while the Peter's 4-day suppressive test model with P. berghei-infected mice was used to evaluate the in vivo antiplasmodial, hepatoprotective, nephroprotective, and immunomodulatory activities. The cytotoxic tests were also carried out using human hepatic cell lines in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. RESULT: The n-hexane, ethyl acetate, and ethanolic extracts of S. arvensis L. leaf exhibited good in vitro antiplasmodial activity with IC50 values 5.119 ± 3.27, 2.916 ± 2.34, and 8.026 ± 1.23 µg/mL, respectively. Each of the extracts also exhibited high antioxidant with low cytotoxic effects. Furthermore, the ethyl acetate extract showed in vivo antiplasmodial activity with ED50 = 46.31 ± 9.36 mg/kg body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with P. berghei. CONCLUSION: This study highlights the antiplasmodial activities of S. arvensis L. leaf ethyl acetate extract against P. falciparum and P. berghei as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. These results indicate the potential of Sonchus arvensis L. to be developed into a new antimalarial drug candidate. However, the compounds and transmission-blocking strategies for malaria control of S. arvensis L. extracts are essential for further study.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Sonchus , Humans , Animals , Mice , Antimalarials/therapeutic use , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Malaria/drug therapy , Ethanol , Malaria, Falciparum/drug therapy , Phytochemicals/therapeutic use
4.
Heliyon ; 9(2): e13644, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789389

ABSTRACT

Natural products play an essential role in new drug discovery. In the present study, we determined the anti-SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus-2), antioxidant, antiplasmodial, and antimicrobial activities of Pterocarpus macrocarpus Kurz. heartwood and structurally characterized the bioactive compounds. P. macrocarpus Kurz. heartwood was macerated with n-hexane, ethyl acetate, and ethanol, respectively, for 7 days, three times. The compounds were isolated by recrystallization with n-hexane and evaluated by thin-layer chromatography (TLC), gas chromatography-mass spectrophotometry (GC-MS), Fourier transform infrared spectroscopy (FITR), and nuclear magnetic resonance (NMR) spectroscopy. Ethyl acetate, ethanol, n-hexane extracts, and homopterocarpin exhibited antiplasmodial activity at 1.78, 2.21, 7.11, and 0.52 µg/ml, respectively, against P. falciparum 3D7 with low toxicity (selectivity index/SI ≥ 28.46). GC-MS identified compound showed in silico anti-SARS-CoV-2 binding affinity with stigmasterol and SARS-CoV-2 helicase of -8.2 kcal/mol. Ethyl acetate extract exhibited the best antioxidant activity against DPPH (0.76 ± 0.92 µg/ml) and ABTS (0.61 ± 0.46 µg/ml). They also demonstrated antimicrobial activity against B. subtilis, ethanol and ethyl acetate extracts against E. coli and C. albicans, and ethanol extract against S. aureus with diameter zone of inhibition of more than 1 cm. The results highlighted antiplasmodial activity of extracts and homopterocarpin from P. macrocarpus Kurz. heartwood and its potent binding in silico to anti-SARS-CoV-2 proteins with low toxicity. This study also confirmed that extracts exhibited antioxidant and antimicrobial activities. Further studies are needed to assess the safety and clinical trial of P. macrocarpus Kurz. for development as new drug candidate.

5.
3 Biotech ; 12(9): 237, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36003897

ABSTRACT

The maximum yield of the crude mannanase from Aureobasidium pullulans NRRL 58524 was 8.42 ± 0.18 U mL-1 when cultured for 72 h in the optimized medium containing 3% (w v-1) defatted spent coffee grounds (SCG) and 0.67% (w v-1) ammonium sulphate. Two forms of mannanase were observed in the crude enzyme and the principal mannanase was enriched to apparent homogeneity via sequential filtration and anion exchange chromatography. The molecular mass of the enzyme was approximately 63 kDa as determined by SDS-PAGE. The enriched mannanase was active at high temperatures (45-75 °C) and a pH range from 3 to 6 with the maximum activity at 55 °C and pH 4.0. The enzyme was relatively thermostable with more than 75% of its initial activity remained after a 12 h incubation at 55 °C. The half-lives of the enriched mannanase were over 8 and 6 h at 60 and 65 °C, respectively. The enzyme was not adversely affected by chelator and most ions tested. This enzyme could hydrolyze both glucomannan and galactomannan and exhibited limited catalytic activity on beta-glucan. When the crude mannanase was used to hydrolyze galactomannan extracted from SCG, the maximum yield of reducing sugars mainly comprising of mannobiose (16.27 ± 0.84 mg 100 mg-1), and mannotriose (2.85 ± 0.20 mg 100 mg-1) was obtained at 58.22 ± 2.04 mg 100 mg-1 dry weight, under optimized condition (84.87 U g-1 mannanase, 41 h 34 min incubation at 55 °C and pH 4.0). These results suggested the prospect of the enzyme in mannan hydrolysis and mannooligosaccharide production at a larger scale. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03301-4.

6.
ACS Omega ; 6(14): 9653-9666, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869945

ABSTRACT

Oil palm empty fruit bunch (EFB) pulp with the highest cellulose content of 83.42% was obtained from an optimized process of acid pretreatment (0.5% v/v H2SO4), alkaline extraction (15% w/w NaOH), and hydrogen peroxide bleaching (10% w/v H2O2), respectively. The EFB cellulose was carboxymethylated, and the obtained carboxymethyl cellulose (CMC) was readily water-soluble (81.32%). The EFB CMC was blended with glycerol and cast into a composite film. Lignin that precipitated from the EFB black liquor was also incorporated into the film at different concentrations, and its effect on the UV-blocking properties of the film was determined. Interestingly, the EFB CMC film without lignin addition completely blocked UV-B transmittance. The incorporation of lignin at all concentrations significantly enhanced the UV-A blocking and other physical properties of the film, including the surface roughness, thickness, and thermal stability, although the tensile strength and water vapor permeability were not significantly affected. Complete UV-A and UV-B blocking were observed when lignin was added at 0.2% (w/v), and the film also exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an half-maximal inhibitory concentration (IC50) value of 3.87 mg mL-1.

7.
3 Biotech ; 11(1): 32, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33457166

ABSTRACT

The newly isolated Trametes polyzona PBURU 12 demonstrated a high tolerance and potential for the degradation of phenanthrene. The fungal isolate was able to tolerate 100 ppm of phenanthrene with 45% relative growth. The crude laccase produced by Trametes polyzona PBURU 12 was able to degrade phenanthrene by up to 98% within 24 h. The degradation metabolites showed the absence of toxic compounds. Microbial viability tests using E. coli and B. subtilis revealed that the treated phenanthrene was less toxic than untreated phenanthrene. Phytotoxicity and genotoxicity tests, using Vigna radiata and Allium cepa, indicated that the treated phenanthrene was less toxic to the plants. No mutagenic activity was found in the Ames test. The crude laccase from Trametes polyzona PBURU 12 was demonstrated as a potential tool for the biodegradation of PAHs (phenanthrene), with low toxic effects after the degradation.

8.
3 Biotech ; 9(11): 389, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31656727

ABSTRACT

Among 23 isolates of cutinase-producing fungi from Thailand, one strain of Fusarium falciforme PBURU-T5 exhibited the greatest cutinase activity (3.36 ± 0.12 U ml-1) against p-nitrophenyl butyrate. This strain was found to produce an inducible cutinase when cultivated in the liquid mineral medium containing cutin from papaya peel as the sole carbon source. By optimizing the production condition based on the central composite experimental design, the maximal cutinase activity up to 4.82 ± 0.18 U ml-1 was attained under the condition: 0.4% (w/v) papaya cutin as the carbon source, 0.3% (w/v) peptone as the nitrogen source, incubation temperature at 30 °C for 4 days, and initial pH 7.0. The crude enzyme was optimally active at 35 °C and pH 9.0 which was suitable for textile industrial application. The treatment with the crude PBURU-T5 cutinase (100 U g-1 dry weight of fabric) could enhance the wetting time, water adsorption and moisture regain of polyethylene terephthalate fabric up to 1.9-, 1.2- and 1.3-fold, respectively, comparing with the conventional 1M NaOH treatment. The increment of these fabric properties by enzymatic treatment could facilitate the dyeing process and enhance the fabric softness. Thus, F. falciforme PBURU-T5 is the promising source of cutinase for the modification of the PET fabric surface.

9.
Appl Biochem Biotechnol ; 189(4): 1327-1337, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31297753

ABSTRACT

A cellulase from the extreme obligate halophilic fungus, Aspergillus flavus, isolated from a man-made solar saltern in Phetchaburi, Thailand, was purified by ammonium sulfate precipitation and using Sephadex G-100 gel filtration column chromatography. The cellulase was found to be approximately 55 kDa by SDS-PAGE. Using CMC as a substrate, the specific activity of the cellulase was 62.9 units (U) mg-1 with Vmax and Km values of 37.87 mol min-1 mg-1 and 3.02 mg mL-1, respectively. Characterization of the enzyme revealed it to be an extremozyme, having an optimum activity at pH 10, 60 °C, and 200 g L-1 of NaCl. The enzyme activity was not significantly altered by the addition of divalent metal cations at 2 mM and neither did ß-mercaptoethanol, while EDTA was found strongly inhibiting the cellulase. Compared with commercial cellulase, the purified cellulase from A. flavus was more active in the extremity of conditions, especially at pH 10, 60 °C, and 150 g L-1 NaCl, whereas the commercial cellulase had a very low activity.


Subject(s)
Aspergillus flavus/enzymology , Biofuels , Cellulase , Ethanol , Fungal Proteins , Cellulase/chemistry , Cellulase/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification
10.
In Vivo ; 33(2): 425-432, 2019.
Article in English | MEDLINE | ID: mdl-30804121

ABSTRACT

BACKGROUND/AIM: Oxidative stress caused by the production of excessive cellular reactive oxygen species (ROS) and high levels of nitric oxide contribute to several human pathologies. This study aimed to examine the anti-oxidant effects of fusigen, a compound produced from Aureobasidium melanogenum. MATERIALS AND METHODS: Extracts of A. melanogenum were selected as a source for the isolation of fusigen. The anti-oxidant, nitric oxide suppression, as well as the free radical scavenging activities of fusigen were tested in BEAS-2B human bronchial epithelial cell line (BEAS-2B cells) and human dermal papilla cells (DP cells) using specific fluorescence dyes and flow cytometry analysis. Cell viability was determined by the MTT assay. RESULTS: Fusigen did not exert cytotoxicity in the human normal BEAS-2B and DP cells at concentrations up to 100 µM. Fusigen decreased basal levels of cellular ROS, as well as the levels of ROS induced by hydrogen peroxide and ferrous ion enrichment. ROS decreasing effect was confirmed in DP cells. In addition, fusigen treatment suppressed intracellular NO levels in both BEAS-2B and DP cells. CONCLUSION: The optimal process of production of purified fusigen from A. melanogenum was determined. Fusigen exhibited a low cytotoxic effect and the potential to suppress ROS and NO. These results demonstrated that fusigen may be used for the treatment or prevention of human diseases.


Subject(s)
Ascomycota/chemistry , Ferric Compounds/pharmacology , Hydroxamic Acids/pharmacology , Oxidative Stress/drug effects , Bronchi/cytology , Bronchi/drug effects , Cell Line , Cell Survival/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Ferric Compounds/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydroxamic Acids/chemistry , Nitric Oxide/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
11.
3 Biotech ; 9(2): 56, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30729080

ABSTRACT

The maximum yield of xylanase from Aureobasidium melanogenum PBUAP46 was 5.19 ± 0.08 U ml-1 when cultured in a production medium containing 3.89% (w/v) rice straw and 0.75% (w/v) NaNO3 as carbon and nitrogen sources, respectively, for 72 h. This enzyme catalyzed well and was relatively stable at pH 7.0 and room temperature (28 ± 2 °C). The produced xylanase was used to hydrolyze xylans from four tropical weeds, whereupon it was found that the highest amounts of reducing sugars in the xylan hydrolysates of cogon grass (Imperata cylindrical), Napier grass (Pennisetum purpureum), and vetiver grass (Vetiveria zizanioides) were at 20.44 ± 0.84, 17.50 ± 0.29, and 19.44 ± 0.40 mg 100 mg xylan-1, respectively, but it was not detectable in water hyacinth (Eichhornia crassipes) hydrolysate. The highest combined amount of xylobiose and xylotriose was obtained from vetiver grass; thus, it was selected for further optimization. After optimization, xylanase digestion of vetiver grass xylan at 27.94 U g xylan-1 for 92 h 19 min gave the highest amount of reducing sugars (23.65 ± 1.34 mg 100 mg xylan-1), which were principally xylobiose and xylotriose. The enriched XOs exhibited a prebiotic property, significantly stimulating the growth of Lactobacillus brevis and L. casei by a factor of up to 3.5- and 6.5-fold, respectively, compared to glucose.

12.
Vet World ; 12(12): 1987-1991, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32095051

ABSTRACT

BACKGROUND AND AIM: Natural products are currently widely used as alternative treatments for liver disease. The study aimed to determine the hepatoprotective effect of crude polysaccharides extracted from Ganoderma lucidum against liver injury induced by carbon tetrachloride (CCl4). MATERIALS AND METHODS: Twenty-four male BALB/C mice were randomly divided into six groups. Serum and liver samples were taken on day 10 after G. lucidum administration. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were measured using enzyme-linked immunosorbent assays, and the histology of the liver was evaluated using light microscopy. RESULTS: G. lucidum extract significantly decreased the levels of ALT, AST, and MDA and significantly increased the levels of SOD and CAT. In the histological evaluation, the liver tissue of CCl4-treated mice exhibited hydropic degeneration, necrosis, and sinusoidal dilatation. G. lucidum extract administration improved this liver tissue histopathology. CONCLUSION: Crude polysaccharides extracted from G. lucidum showed a hepatoprotective effect, regenerating damaged liver tissue.

13.
Appl Biochem Biotechnol ; 184(3): 919-934, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28918541

ABSTRACT

From three cell-associated ß-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60-70 °C) over a pH range of 5-9 with a specific activity of 163.3 units (U) mg-1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-ß-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 µmol min-1 mg-1 protein, respectively. When combining this ß-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g-1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g-1 ß-xylosidase and 16 U g-1 xylanase after incubation for 4 h at 70 °C and pH 6.0.


Subject(s)
Ascomycota/enzymology , Fungal Proteins/chemistry , Xylans/chemistry , Xylosidases/chemistry , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Hydrolysis
14.
Folia Microbiol (Praha) ; 63(2): 129-140, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29079936

ABSTRACT

Different strains of the saprophytic yeast-like fungus Aureobasidium pullulans (Ascomycota: Dothideales) exhibit different biochemical characteristics, while their ubiquitous occurrence across diverse habitats and environmental conditions makes them an easily accessible source for biotechnological exploitation. They are useful in agricultural and industrial applications. Their antagonistic activities against postharvest pathogens make them suitable bioagents for the postharvest preservation of fruits and vegetables, while they possess antimicrobial activities against bacteria and fungi. Additionally, A. pullulans appears to be a potent source of single-cell protein. Many strains of A. pullulans harbor a wide range of industrially important enzymes, while the trademark exopolysaccharide pullulan that they produce has been extensively studied and is currently used in many applications. They also produce poly (ß-L-malic acid), heavy oil liamocins, siderophore, and aubasidan-like ß-glucan which are of interest for future applications. Ongoing studies suggest that A. pullulans holds many more interesting properties capable of further potential biotechnological applications.


Subject(s)
Ascomycota/metabolism , Industrial Microbiology , Ascomycota/enzymology , Ascomycota/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucans/metabolism
16.
Biomed Res Int ; 2015: 245649, 2015.
Article in English | MEDLINE | ID: mdl-26180787

ABSTRACT

An extracellular α-amylase from the obligate halophilic Aspergillus penicillioides TISTR3639 strain was produced and enriched to apparent homogeneity by ammonium sulfate precipitation and Sephadex G100 gel filtration column chromatography. The mass of the purified amylase was estimated to be 42 kDa by SDS-PAGE. With soluble starch as the substrate it had a specific activity of 118.42 U · mg(-1) and Vmax and Km values of 1.05 µmol · min(-1) · mg(-1) and 5.41 mg · mL(-1), respectively. The enzyme was found to have certain polyextremophilic characteristics, with an optimum activity at pH 9, 80 °C, and 300 g · L(-1) NaCl. The addition of CaCl2 at 2 mM was found to slightly enhance the amylase activity, while ZnCl2, FeCl2, or EDTA at 2 mM was strongly or moderately inhibitory, respectively, suggesting the requirement for a (non-Fe(2+) or Zn(2+)) divalent cation. The enzyme retained more than 80% of its activity when incubated with three different laundry detergents and had a better performance compared to a commercial amylase and three detergents in the presence of increasing NaCl concentrations up to 300 g · L(-1). Accordingly, it has a good potential for use as an α-amylase in a low water activity (high salt concentration) and at high pH and temperatures.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , alpha-Amylases/chemistry , alpha-Amylases/isolation & purification , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration
17.
Biomed Res Int ; 2014: 106937, 2014.
Article in English | MEDLINE | ID: mdl-24949415

ABSTRACT

An obligate halophilic Aspergillus gracilis which was isolated from a hypersaline man-made saltern from Thailand was screened for its potential of producing extracellular α -amylase in the previous studies. In this study the α -amylase was extracted and purified by the help of column chromatography using Sephadex G-100 column. Presence of amylase was verified by SDS-PAGE analysis, showing a single band of approximately 35 kDa. The specific activity of the enzyme was found to be 131.02 U/mg. The Lineweaver-Burk plot showed the V max and K m values of 8.36 U/mg and 6.33 mg/mL, respectively. The enzyme was found to have the best activity at 5 pH, 60°C, and 30% of NaCl concentration, showing its polyextremophilic nature. The use of various additives did not show much variation in the activity of enzyme, showing its resilience against inhibitors. The enzyme, when tested for its use for synthetic waste water remediation by comparing its activity with commercial amylase in different salt concentrations showed that the α -amylase from A. gracilis was having better performance at increasing salt concentrations than the commercial one. This shows its potential to be applied in saline waste water and other low water activity effluents for bioremediation.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/chemistry , Salinity , Wastewater/chemistry , Water Purification/methods , alpha-Amylases/chemistry
18.
Springerplus ; 3: 37, 2014.
Article in English | MEDLINE | ID: mdl-24478945

ABSTRACT

In an attempt to find a thermostable xylanase enzyme for potential application in the pretreatment prior to H2O2 bleaching of paper pulp for industry, an extracellular xylanase from Aureobasidium pullulans CBS 135684 was purified 17.3-fold to apparent homogeneity with a recovery yield of 13.7%. Its molecular mass was approximately 72 kDa as determined by SDS-PAGE. The optimal pH and temperature for activity of the purified enzyme were pH 6.0 and 70°C, respectively. The enzyme was relatively stable at 50°C, retaining more than half of its original activity after 3-h incubation. The thermostability of the enzyme was improved by the addition of 0.75 mM sorbitol prolonging the enzyme's activity up to 10-fold at 70°C. When the potential of using the enzyme in pretreatment of rice straw pulp prior to bleaching was evaluated, the greatest efficiency was obtained in a mixture containing xylanase and sorbitol. Treatment of the rice straw pulp with xylanase prior to treatment with 10% (v/v) H2O2 and production of hand sheets increased the ISO sheet brightness by 13.5% and increased the tensile and tear strengths of the pulp by up to 1.16 and 1.71-fold, respectively, compared with pulps treated with H2O2 alone. The results suggested the potential application of the enzyme before the bleaching process of paper pulp when the maintenance of high temperature and enzyme stability are desirable.

19.
Appl Microbiol Biotechnol ; 97(17): 7821-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23828601

ABSTRACT

Cultured cell extracts from ten tropical strains of Aureobasidium pullulans were screened for antifungal activity against four pathogenic Aspergillus species (Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, and Aspergillus terreus) using the well diffusion and conidial germination inhibition assays. The crude cell extract from A. pullulans NRRL 58536 resulted in the greatest fungicidal activity against all four Aspergillus species and so was selected for further investigation into enhancing the production of antifungal activity through optimization of the culture medium, carbon source (sucrose and glucose) and amino acid (phenylalanine, proline, and leucine) supplementation. Sucrose did not support the production of any detectable antifungal activity, while glucose did with the greatest antifungal activity against all four Aspergillus species being produced in cells grown in medium containing 2.5 % (w/v) glucose. With respect to the amino acid supplements, variable trends between the different Aspergillus species and amino acid combinations were observed, with the greatest antifungal activities being obtained when grown with phenylalanine plus leucine supplementation for activity against A. flavus, proline plus leucine for A. terreus, and phenylalanine plus proline and leucine for A. niger and A. fumigatus. Thin layer chromatography, spectrophotometry, high-performance liquid chromatography, (1)H-nuclear magnetic resonance, and MALDI-TOF mass spectrometry analyses were all consistent with the main component of the A. pullulans NRRL 58536 extracts being aureobasidins.


Subject(s)
Amino Acids/metabolism , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Ascomycota/metabolism , Aspergillus/drug effects , Glucose/metabolism , Sucrose/metabolism , Antifungal Agents/chemistry , Ascomycota/chemistry , Aspergillus/classification , Aspergillus/growth & development , Culture Media/chemistry , Culture Media/metabolism , Depsipeptides/chemistry , Depsipeptides/metabolism , Depsipeptides/pharmacology , Microbial Sensitivity Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
Biotechnol Lett ; 33(6): 1151-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21293903

ABSTRACT

From a survey of more than 50 diverse strains of Aureobasidium pullulans, 21 produced extracellular heavy oils. Most oil producers fell into phylogenetic clades 8, 9, and 11. Oil colors ranged from bright yellow to malachite. More than half of the strains produced oil that was fluorescent. In medium containing 5% (w/v) sucrose, oil yields ranged from 0.5 to 6 g oil/l. Strain CU 43 reached stationary growth phase at day 4 while oil yields were maximal at day 6. CU 43 produced bright yellow, highly fluorescent oil that also was visible as intracellular droplets under fluorescent microscopy. Oil was surface active, suggesting that it functions as a biosurfactant. Oil from two strains (CU 43 and NRRL Y-12974) differentially inhibited mammalian cancer cell lines. MALDI-TOF MS spectra suggested that A. pullulans strains produce a family of related oil structures.


Subject(s)
Ascomycota/metabolism , Oils/metabolism , Ascomycota/growth & development , Ascomycota/isolation & purification , Biotechnology , Microscopy, Fluorescence , Molecular Structure , Oils/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...