Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 78(9): 4435-4450, 2021 May.
Article in English | MEDLINE | ID: mdl-33796894

ABSTRACT

During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.


Subject(s)
Cadherins/metabolism , Neural Crest/metabolism , Animals , Cadherins/chemistry , Cadherins/classification , Cell Adhesion , Cell Differentiation , Evolution, Molecular , Humans , Neural Crest/cytology , Neural Crest/growth & development , Neurogenesis , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nature ; 585(7825): 355-356, 2020 09.
Article in English | MEDLINE | ID: mdl-32879478

Subject(s)
Neoplasms , Epithelium , Humans
3.
Development ; 146(21)2019 11 08.
Article in English | MEDLINE | ID: mdl-31601548

ABSTRACT

A switch from E- to N-cadherin regulates the transition from pluripotency to neural identity, but the mechanism by which cadherins regulate differentiation was previously unknown. Here, we show that the acquisition of N-cadherin stabilises neural identity by dampening anti-neural signals. We use quantitative image analysis to show that N-cadherin promotes neural differentiation independently of its effects on cell cohesiveness. We reveal that cadherin switching diminishes the level of nuclear ß-catenin, and that N-cadherin also dampens FGF activity and consequently stabilises neural fate. Finally, we compare the timing of cadherin switching and differentiation in vivo and in vitro, and find that this process becomes dysregulated during in vitro differentiation. We propose that N-cadherin helps to propagate a stable neural identity throughout the emerging neuroepithelium, and that dysregulation of this process contributes to asynchronous differentiation in culture.


Subject(s)
Cadherins/physiology , Embryonic Stem Cells/cytology , Neurons/cytology , beta Catenin/physiology , Animals , Cell Differentiation , Cell Lineage , Cell Nucleus/physiology , Cells, Cultured , Fibroblast Growth Factors/physiology , Germ Layers/physiology , Mice , Mice, Transgenic , Pluripotent Stem Cells/cytology
4.
Elife ; 52016 10 01.
Article in English | MEDLINE | ID: mdl-27692071

ABSTRACT

Evolutionary differences in gene regulation between humans and lower mammalian experimental systems are incompletely understood, a potential translational obstacle that is challenging to surmount in neurons, where primary tissue availability is poor. Rodent-based studies show that activity-dependent transcriptional programs mediate myriad functions in neuronal development, but the extent of their conservation in human neurons is unknown. We compared activity-dependent transcriptional responses in developing human stem cell-derived cortical neurons with those induced in developing primary- or stem cell-derived mouse cortical neurons. While activity-dependent gene-responsiveness showed little dependence on developmental stage or origin (primary tissue vs. stem cell), notable species-dependent differences were observed. Moreover, differential species-specific gene ortholog regulation was recapitulated in aneuploid mouse neurons carrying human chromosome-21, implicating promoter/enhancer sequence divergence as a factor, including human-specific activity-responsive AP-1 sites. These findings support the use of human neuronal systems for probing transcriptional responses to physiological stimuli or indeed pharmaceutical agents.


Subject(s)
Biological Evolution , Gene Expression Regulation, Developmental , Neural Stem Cells/physiology , Neurons/physiology , Transcription, Genetic , Animals , Cells, Cultured , Humans , Mice
5.
J Gen Virol ; 97(2): 306-315, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26675486

ABSTRACT

For influenza A and B viruses to be infectious, they require eight viral RNA (vRNA) genome segments to be packaged into virions. For efficient packaging, influenza A viruses utilize cis-acting vRNA sequences, containing both non-coding and protein coding regions of each segment. Whether influenza B viruses have similar packaging signals is unknown. Here we show that coding regions at the 3' and 5' ends of the influenza B virus vRNA segment 4 are required for genome packaging, with the first 30 nt at each end essential for this process. Synonymous mutation of these regions led to virus attenuation, an increase in defective particle production and a reduction in packaging of multiple vRNAs. Overall, our data suggest that the influenza B virus vRNA gene segments likely interact with each other during the packaging process, which is driven by cis-acting packaging signals that extend into protein coding regions of the vRNA.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza B virus/physiology , RNA, Viral/genetics , Virus Assembly , DNA Mutational Analysis , Humans , Open Reading Frames , RNA, Untranslated
SELECTION OF CITATIONS
SEARCH DETAIL
...