Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(10): e31313, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831811

ABSTRACT

Approaches aiming to recover proteins without denaturation represent attractive strategies. To accomplish this, a membrane lysis agent based on poly(styrene-alt-maleic acid) or PSMA was synthesized by photopolymerization using Irgacure® 2959 and carbon tetrabromide (CBr4) as a radical initiator and a reversible chain transfer agent, respectively. Structural elucidation of our in-house synthesized PSMA, so-called photo-PSMA, was performed by using NMR spectroscopy. The use of this photo-PSMA in soybean enzyme extraction was also demonstrated for the first time in this study. Without a severe cell rupture, energy input or any organic solvent, recovery of lipolytic enzymes directly into nanometric-sized particles was accomplished in one-step process. Due to the improved structural regularity along the photo-PSMA backbone, the most effective protective reservoir for enzyme immobilization was generated through the PSMA aggregation. Formation of such reservoir enabled soybean enzymes to be shielded from the surroundings and resolved in their full functioning state. This was convinced by the increased specific lipolytic activity to 1,950 mU/mg, significantly higher than those of sodium dodecyl sulfate (SDS) and the two commercially-available PSMA sources (1000P and 2000P). Our photo-PSMA had thus demonstrated its great potential for cell lyse application, especially for soybean hydrolase extraction.

2.
Int J Biol Macromol ; 270(Pt 2): 132380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754656

ABSTRACT

Clean water and sanitation issues motivate researchers to develop water evaporators for freshwater generation. The composite membrane evaporator was electrospun herein based on poly(lactic acid) (PLA) and Ti3AlC2 MAX phase as a property enhancer. As a precursor for the MXenes synthesis, the MAX phase has never been explored with PLA for water evaporator potential. Alternative use of the MAX phase can reduce the production cost arising from chemical synthesis. This work explored the potential of the MAX phase as an additive to enhance PLA membrane performance for steam generation and desalination applications. Under the infrared irradiation (∼1.0 kW/m2), the mechanically-improved PLA/MAX phase membrane showed an enhanced water evaporation rate of 1.70 kg/m2 h (93.93 % efficiency), with an approximately 52 % rate increment relative to the PLA membrane. Based on the artificial seawater (3.5 % w/w), the membrane exhibited an evaporation rate of 1.60 kg/m2 h (87.57 % efficiency). The membrane showed self-floating ability at the air-water interface, excellent thermal stability over the entire operating temperatures, and reusability after repeated cycles. Moreover, the generated freshwater contained exceptionally low cations concentrations, as low as those in potable water. The developed composite membrane also had proved its potential for solar desalination in the water generation field.


Subject(s)
Membranes, Artificial , Polyesters , Steam , Titanium , Water Purification , Polyesters/chemistry , Titanium/chemistry , Water Purification/methods , Sunlight
3.
Artif Cells Nanomed Biotechnol ; 51(1): 192-204, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37052886

ABSTRACT

Bee propolis has been used in alternative medicine to treat various diseases. Due to its limited water solubility, it is often used in combination with alcohol solvents, causing skin irritation and immune response. To solve this, the new drug delivery system, based on the lipid nanodiscs of 1,2-dimyristoyl-sn-glycero-3-phosphochline (DMPC) and poly(styrene-alt-maleic acid) (PSMA), were created in an aqueous media. At the excess polymer concentrations, the PSMA/DMPC complexation produced the very fine nanoparticles (18 nm). With the increased molar ratio of styrene to maleic acid (St/MA) in the copolymer structure, the lipid nanodisc showed the improved encapsulation efficiency (EE%), comparing to their corresponding aqueous formulations. The maximum value had reached to around 20% when using the 2:1 PSMA precursor. Based on the cytotoxicity test, these nanoparticles were considered to be non-toxic over the low dose administration region (<78 µg/mL). Instead, they possessed the ability to promote the Vero cell growth. The new PSMA/DMPC nanovesicles could thus be used to improve aqueous solubility and therapeutic effects of poorly water-soluble drugs, thus extending their use in modern therapies.


New biomimetic approach for propolis encapsulation was developed with no use of organic solvent.Propolis antioxidants were recovered directly into water-soluble formats.The very fine lipid nanodiscs showed impressive shelf-life stability and tuneable drug-loading capacity.


Subject(s)
Propolis , Propolis/pharmacology , Dimyristoylphosphatidylcholine/chemistry , Polystyrenes/chemistry , Maleates/chemistry , Polymers/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL