Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37892898

ABSTRACT

Dental implant insertion requires the preparation of the implant bed via surgical drilling. During this stage, irrigation is essential to avoid thermal damage to the surrounding bone. Surgical guides enhance the accuracy of the implant site preparation, but they mask the drilling site, hampering coolant delivery. A variety of designs are aimed at improving the coolant access to the target site. Using standard dental implant simulation software, this paper presents an in-house design and 3D printing workflow for building surgical guides that incorporate a coolant channel directed toward the entry point of the burr. The proposed design was evaluated in terms of the bone temperature elevations caused by drilling performed at 1500 rpm, under an axial load of 2 kg, and irrigation with 40 mL/min of saline solution at 25 °C. Temperature measurements were performed on porcine femoral pieces, in the middle of the cortical bone layer, at 1 mm from the edge of the osteotomy. The mean temperature rise was 3.2 °C for a cylindrical sleeve guide, 2.7 °C for a C-shaped open-sleeve guide, and 2.1 °C for the guide with an incorporated coolant channel. According to a one-way ANOVA, the differences between these means were marginally insignificant (p = 0.056). The individual values of the peak temperature change remained below the bone damage threshold (10 °C) in all cases. Remarkably, the distribution of the recorded temperatures was the narrowest for the guide with internal irrigation, suggesting that, besides the most effective cooling, it provides the most precise control of the intraosseous temperature. Further studies could test different design variants, experimental models (including live animals), and might involve computer simulations of the bone temperature field.

2.
Life (Basel) ; 13(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37374098

ABSTRACT

Air displacement plethysmography (ADP) is a widespread technique for assessing global obesity in both health and disease. The reliability of ADP has been demonstrated by studies focused on duplicate trials. The present study was purported to evaluate learning effects on the reliability of body composition assessment using the BOD POD system, the sole commercially available ADP instrument. To this end, quadruplicate trials were performed on a group of 105 subjects (51 women and 54 men). We estimated measurement error from pairs of consecutive trials-(1,2), (2,3), and (3,4)-to test the hypothesis that early measurements are subject to larger errors. Indeed, statistical analysis revealed that measures of reliability inferred from the first two trials were inferior to those computed for the other pairs of contiguous trials: for percent body fat (%BF), the standard error of measurement (SEM) was 1.04% for pair (1,2), 0.71% for pair (2,3), and 0.66% for pair (3,4); the two-way random effects model intraclass correlation coefficient (ICC) was 0.991 for pair (1,2), and 0.996 for pairs (2,3) and (3,4). Our findings suggest that, at least for novice subjects, the first ADP test should be regarded as a practice trial. When the remaining trials were pooled together, the reliability indices of single ADP tests were the following: ICC = 0.996, SEM = 0.70%, and minimum detectable change (MDC) = 1.93% for %BF, and ICC = 0.999, SEM = 0.49 kg, and MDC = 1.35 kg for fat-free mass (FFM). Thus, the present study pleads for eliminating learning effects to further increase the reliability of ADP.

3.
Diagnostics (Basel) ; 11(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401607

ABSTRACT

Neuromuscular electrical stimulation (NMES) is useful for muscle strengthening and for motor restoration of stroke patients. Using a portable ultrasound instrument, we developed an M-mode imaging protocol to visualize contractions elicited by NMES in the quadriceps muscle group. To quantify muscle activation, we performed digital image processing based on the Teager-Kaiser energy operator. The proposed method was applied for 35 voluntary patients (18 women and 17 men), of 63.8 ± 14.1 years and body mass index (BMI) 30.2 ± 6.70 kg/m2 (mean ± standard deviation). Biphasic, rectangular electric pulses of 350 µs duration were applied at two frequencies (60 Hz and 120 Hz), and ultrasound was used to assess the sensory threshold (ST) and motor threshold (MT) amplitude of the NMES signal. The MT was 23.4 ± 4.94 mA, whereas the MT to ST ratio was 2.69 ± 0.57. Linear regression analysis revealed that MT correlates poorly with body mass index (R2 = 0.004) or with the thickness of the subcutaneous adipose tissue layer that covers the treated muscle (R2 = 0.013). Our work suggests that ultrasound is suitable to visualize neuromuscular reactivity during electrotherapy. The proposed method can be used in the clinic, enabling the physiotherapist to establish personalized treatment parameters.

4.
Eur J Clin Nutr ; 75(3): 438-445, 2021 03.
Article in English | MEDLINE | ID: mdl-32917960

ABSTRACT

BACKGROUND/OBJECTIVES: Several studies have addressed the validity of ultrasound (US) for body composition assessment, but few have evaluated its reliability. This study aimed to determine the reliability of percent body fat (%BF) estimates using A-mode US in a heterogeneous sample. SUBJECTS/METHODS: A group of 144 healthy adults (81 men and 63 women), 30.4 (10.1) years (mean (SD)), BMI 24.6 (4.7) kg/m2, completed 6 consecutive measurements of the subcutaneous fat layer thickness at 8 anatomical sites. The measurements were done, alternatively, by two testers, using a BodyMetrix™ instrument. To compute %BF, 4 formulas from the BodyView™ software were applied: 7-sites Jackson and Pollock, 3-sites Jackson and Pollock, 3-sites Pollock, and 1-point biceps. RESULTS: The formula with the most anatomic sites provided the best reliability quantified by the following measures: intraclass correlation coefficient (ICC) = 0.979 for Tester 1 (T1) and 0.985 for T2, technical error of measurement (TEM) = 1.07% BF for T1 and 0.89% BF for T2, and minimal detectable change (MDC) = 2.95% BF for T1, and 2.47% BF for T2. The intertester bias was -0.5% BF, whereas the intertester ICC was 0.972. The intertester MDC was 3.43% BF for the entire sample, 3.24% BF for men, and 3.65% BF for women. CONCLUSIONS: A-mode US is highly reliable for %BF assessments, but it is more precise for men than for women. Examiner performance is a source of variability that needs to be mitigated to further improve the precision of this technique.


Subject(s)
Body Composition , Subcutaneous Fat , Adipose Tissue/diagnostic imaging , Adult , Female , Humans , Male , Reproducibility of Results , Subcutaneous Fat/diagnostic imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...