Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(10): 15888, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157679

ABSTRACT

This erratum corrects a typographical error in equation (8) of our published paper [Opt. Express31, 7103 (2023)10.1364/OE.479356]. All the calculations used the correct equation, so all the results and conclusions remain unchanged.

2.
Opt Express ; 31(5): 7103-7119, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859848

ABSTRACT

We present a new type of dual optical frequency comb source capable of scaling applications to high measurement speeds while combining high average power, ultra-low noise operation, and a compact setup. Our approach is based on a diode-pumped solid-state laser cavity which includes an intracavity biprism operated at Brewster angle to generate two spatially-separated modes with highly correlated properties. The 15-cm-long cavity uses an Yb:CALGO crystal and a semiconductor saturable absorber mirror as an end mirror to generate more than 3 W average power per comb, below 80 fs pulse duration, a repetition rate of 1.03 GHz, and a continuously tunable repetition rate difference up to 27 kHz. We carefully investigate the coherence properties of the dual-comb by a series of heterodyne measurements, revealing several important features: (1) ultra-low jitter on the uncorrelated part of the timing noise; (2) the radio frequency comb lines of the interferograms are fully resolved in free-running operation; (3) we validate that through a simple measurement of the interferograms we can determine the fluctuations of the phase of all the radio frequency comb lines; (4) this phase information is used in a post-processing routine to perform coherently averaged dual-comb spectroscopy of acetylene (C2H2) over long timescales. Our results represent a powerful and general approach to dual-comb applications by combining low noise and high power operation directly from a highly compact laser oscillator.

3.
Photoacoustics ; 29: 100439, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36570472

ABSTRACT

Ultrafast pump-probe measurements are used to characterize various samples, such as biological cells, bulk, and thin-film structures. However, typical implementations of the pump-probe apparatus are either slow or complex and costly hindering wide deployment. Here we combine a single-cavity dual-comb laser with a simple experimental setup to obtain pump-probe measurements with ultra-high sensitivity, fast acquisition, and high timing precision over long optical delay scan ranges of 12.5 ns that would correspond to a mechanical delay of about 3.75 m. We employ digital signal balancing to obtain shot-noise-limited detection compatible with pump-probe microscopy deployment. Here we demonstrate ultrafast photoacoustics for thin-film sample characterization. We measured a tungsten layer thickness of (700 ± 4) Å with shot-noise-limited detection. Such single-cavity dual-comb lasers can be used for any pump-probe measurements and are especially well-suited for ultrafast photoacoustic studies such as involving ultrasonic echoes, Brillouin oscillations, surface acoustic waves and thermal dynamics.

4.
Opt Express ; 30(11): 19904-19921, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221754

ABSTRACT

We demonstrate a free-running single-cavity dual-comb optical parametric oscillator (OPO) pumped by a single-cavity dual-comb solid-state laser. The OPO ring cavity contains a single periodically-poled MgO-doped LiNbO3 (PPLN) crystal. Each idler beam has more than 245-mW average power at 3550 nm and 3579 nm center wavelengths (bandwidth 130 nm). The signal beams are simultaneously outcoupled with more than 220 mW per beam at 1499 nm and 1496 nm center wavelength. The nominal repetition rate is 80 MHz, while the repetition rate difference is tunable and set to 34 Hz. To evaluate the feasibility of using this type of source for dual-comb applications, we characterize the noise and coherence properties of the OPO signal beams. We find ultra-low relative intensity noise (RIN) below -158 dBc/Hz at offset frequencies above 1 MHz. A heterodyne beat note measurement with a continuous wave (cw) laser is performed to determine the linewidth of a radio-frequency (RF) comb line. We find a full-width half-maximum (FWHM) linewidth of around 400 Hz. Moreover, the interferometric measurement between the two signal beams reveals a surprising property: the center of the corresponding RF spectrum is always near zero frequency, even when tuning the pump repetition rate difference or the OPO cavity length. We explain this effect theoretically and discuss its implications for generating stable low-noise idler combs suitable for high-sensitivity mid-infrared dual-comb spectroscopy (DCS).

5.
Opt Express ; 30(4): 5075-5094, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209478

ABSTRACT

Pulse trains emitted from dual-comb systems are designed to have low relative timing jitter, making them useful for many optical measurement techniques such as optical ranging and spectroscopy. However, the characterization of low-jitter dual-comb systems is challenging because it requires measurement techniques with high sensitivity. Motivated by this challenge, we developed a technique based on an optical heterodyne detection approach for measuring the relative timing jitter of two pulse trains. The method is suitable for dual-comb systems with essentially any repetition rate difference. Furthermore, the proposed approach allows for continuous and precise tracking of the sampling rate. To demonstrate the technique, we perform a detailed characterization of a single-mode-diode pumped Yb:CaF2 dual-comb laser from a free-running polarization-multiplexed cavity. This new laser produces 115-fs pulses at 160 MHz repetition rate, with 130 mW of average power in each comb. The detection noise floor for the relative timing jitter between the two pulse trains reaches 8.0 × 10-7 fs2/Hz (∼ 896 zs/Hz), and the relative root mean square (rms) timing jitter is 13 fs when integrating from 100 Hz to 1 MHz. This performance indicates that the demonstrated laser is highly compatible with practical dual-comb spectroscopy, ranging, and sampling applications. Furthermore, our results show that the relative timing noise measurement technique can characterize dual-comb systems operating in free-running mode or with finite repetition rate differences while providing a sub-attosecond resolution, which was not feasible with any other approach before.

6.
Opt Express ; 29(21): 32996-33008, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809120

ABSTRACT

We compare the generation of high-order harmonics in the water window (283-543 eV) with 0.8-µm and 2.2-µm few-cycle lasers at a pulse repetition rate of 100 kHz. Using conventional phase matching with the 2.2-µm driver and what we attribute to nonadiabatic self-phase-matching with the 0.8-µm driver, photons up to 0.6 keV (2 nm) are generated in both cases. Special attention is paid to the understanding of the generation mechanism with the 0.8-µm laser amplifier system. We use the same beamline and pump laser for both drivers, which allows for a direct flux comparison at the two driving wavelengths. For photon energies around 280 eV, a 10-100 times higher flux is obtained from the 2.2-µm versus the 0.8-µm laser system in helium and neon. The crossover at which the 2.2-µm yields a higher flux compared to the 0.8-µm driver is found to be as high as 0.2 keV. Our study supports the common approach of using long-wavelength lasers in a phase-matched regime for efficient generation of water-window harmonics, but also shows that the more widespread 0.8-µm wavelength can be used to generate water-window harmonics with an efficiency close to the one of a less common 2.2-µm source.

7.
Opt Express ; 28(26): 40145-40154, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379546

ABSTRACT

We present a near-infrared optical parametric chirped-pulse amplifier (OPCPA) and soft X-ray (SXR) high-harmonic generation system. The OPCPA produces few-cycle pulses at a center wavelength of 800 nm and operates at a high repetition rate of 100 kHz. It is seeded by fully programmable amplitude and phase controlled ultra-broadband pulses from a Ti:sapphire oscillator. The output from the OPCPA system was compressed to near-transform-limited 9.3-fs pulses. Fully characterized pulse compression was recorded for an average power of 22.5 W, demonstrating pulses with a peak power greater than 21 GW. Without full temporal characterization, high-power operation was achieved up to 35 W. We demonstrate that at such high repetition rates, spatiotemporally flattened pump pulses can be achieved through a cascaded second-harmonic generation approach with an efficiency of more than 70%. This combination provides a compelling OPCPA architecture for scaling the peak power of high-repetition-rate ultra-broadband systems in the near-infrared. The output of this 800-nm OPCPA system was used to generate SXR radiation reaching 190 eV photon energy through high-harmonic generation in helium.

8.
Opt Express ; 27(1): 175-184, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30645365

ABSTRACT

We experimentally demonstrate a novel use of a spatial light modulator (SLM) for shaping ultrashort pulses in time-gated amplification systems. We show that spectral aberrations because of the device's pixelated nature can be avoided by introducing a group delay offset to the pulse via the SLM, followed by a time-gated amplification. Because of phase wrapping, a large delay offset yields a nearly-periodic grating-like phase function (or a phase grating). We show that, in this regime, the phase grating periocidity defines the group delay spectrum applied to the pulse, while the grating's amplitude defines the fraction of light that is delayed. We therefore demonstrate that a one-dimensional (1D) SLM pixel array is sufficient to control both the spectral amplitude and the phase of the amplified pulses.

9.
Opt Express ; 26(20): 26750-26757, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30469755

ABSTRACT

We present a high-power mid-infrared (mid-IR) optical parametric chirped-pulse amplifier (OPCPA) generating 14.4 fs pulses centered at 2.5 µm with an average power of 12.6 W and a repetition rate of 100 kHz. The short pulses are obtained without nonlinear pulse compression. This is in contrast to most few-cycle systems operating in the mid-IR. In our case, the ultrashort pulse duration is enabled by a careful design of the gain profile of each amplification stage as well as a precise control of the signal dispersion throughout the system. A pulse shaper is used in the seed beam to adjust the spectral phase at the output of the OPCPA system. This approach allows for a clean temporal profile leading to a high peak power of 6.3 GW.

10.
Opt Express ; 26(5): 6036-6045, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529799

ABSTRACT

In optical parametric amplification (OPA) of broadband pulses, a non-collinear angle between the interacting waves is typically introduced in order to achieve broadband phase-matching. Consequently, bandwidth and beam geometry are closely linked. This coupling restricts the geometrical layout of an OPA system. Here, we demonstrate a quasi-phase-matching (QPM) geometry for broadband OPA in which a transverse component is introduced to the QPM grating to impose an additional momentum on the generated wave. This momentum shift detunes the wavelength where the signal and the idler are group-velocity matched, thereby allowing for broadband phase-matching without having to add a non-collinear angle between the interacting waves. We present two experimental configurations making use of this principle, and propose a third configuration with the potential to further simplify ultra-broadband OPA system architectures.

SELECTION OF CITATIONS
SEARCH DETAIL
...