Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(2): 261-264, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030582

ABSTRACT

We present a technique to optimize the intrapulse difference frequency generation efficiency for mid-infrared generation. The approach employs a multi-order wave plate that is designed to selectively rotate the polarization state of the incoming spectral components on the relevant orthogonal axes for subsequent nonlinear interaction. We demonstrate a significant increase of the mid-infrared average power generated, of a factor ≥2.5 compared with the conventional scheme, owing to an optimally distributed number of photons enrolled in the difference frequency generation process.

2.
Nat Commun ; 12(1): 3404, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34099684

ABSTRACT

Time-resolved photoelectron spectroscopy with attosecond precision provides new insights into the photoelectric effect and gives information about the timing of photoemission from different electronic states within the electronic band structure of solids. Electron transport, scattering phenomena and electron-electron correlation effects can be observed on attosecond time scales by timing photoemission from valence band states against that from core states. However, accessing intraband effects was so far particularly challenging due to the simultaneous requirements on energy, momentum and time resolution. Here we report on an experiment utilizing intracavity generated attosecond pulse trains to meet these demands at high flux and high photon energies to measure intraband delays between sp- and d-band states in the valence band photoemission from tungsten and investigate final-state effects in resonant photoemission.

3.
Opt Lett ; 44(7): 1730-1733, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933133

ABSTRACT

We report a coherent mid-infrared (MIR) source with a combination of broad spectral coverage (6-18 µm), high repetition rate (50 MHz), and high average power (0.5 W). The waveform-stable pulses emerge via intrapulse difference-frequency generation (IPDFG) in a GaSe crystal, driven by a 30-W-average-power train of 32-fs pulses spectrally centered at 2 µm, delivered by a fiber-laser system. Electro-optic sampling (EOS) of the waveform-stable MIR waveforms reveals their single-cycle nature, confirming the excellent phase matching both of IPDFG and of EOS with 2-µm pulses in GaSe.

4.
Opt Express ; 27(3): 2432-2443, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732280

ABSTRACT

We present a Mach-Zehnder-like interferometer capable of simultaneous super-octave (950 - 2100 nm) destructive interference with an intensity extinction of 4 × 10-4. Achromatic nulling is achieved by unbalancing the number of Fresnel reflections off optically denser media in the two interferometer arms. With a methane gas sample in one interferometer arm, we isolate the coherent molecular vibrational emission from the broadband, impulsive excitation and quantitatively examine the potential improvement in detectable concentration, compared to direct transmission geometry. The novel concept will benefit sensing applications requiring high detection sensitivity and dynamic range, including time-domain and frequency-domain spectroscopy.

5.
Nat Commun ; 10(1): 458, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692528

ABSTRACT

Laser-dressed photoelectron spectroscopy, employing extreme-ultraviolet attosecond pulses obtained by femtosecond-laser-driven high-order harmonic generation, grants access to atomic-scale electron dynamics. Limited by space charge effects determining the admissible number of photoelectrons ejected during each laser pulse, multidimensional (i.e. spatially or angle-resolved) attosecond photoelectron spectroscopy of solids and nanostructures requires high-photon-energy, broadband high harmonic sources operating at high repetition rates. Here, we present a high-conversion-efficiency, 18.4-MHz-repetition-rate cavity-enhanced high harmonic source emitting 5 × 105 photons per pulse in the 25-to-60-eV range, releasing 1 × 1010 photoelectrons per second from a 10-µm-diameter spot on tungsten, at space charge distortions of only a few tens of meV. Broadband, time-of-flight photoelectron detection with nearly 100% temporal duty cycle evidences a count rate improvement between two and three orders of magnitude over state-of-the-art attosecond photoelectron spectroscopy experiments under identical space charge conditions. The measurement time reduction and the photon energy scalability render this technology viable for next-generation, high-repetition-rate, multidimensional attosecond metrology.

6.
Opt Lett ; 43(21): 5178-5181, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30382961

ABSTRACT

We report on the generation of a high-power frequency comb in the 2 µm wavelength regime featuring high amplitude and phase stability with unprecedented laser parameters, combining 60 W of average power with <30 fs pulse duration. The key components of the system are a mode-locked Er:fiber laser, a coherence-preserving nonlinear broadening stage, and a high-power Tm-doped fiber chirped-pulse amplifier with subsequent nonlinear self-compression of the pulses. Phase locking of the system resulted in a phase noise of less than 320 mrad measured within the 10 Hz-30 MHz band and 30 mrad in the band from 10 Hz to 1 MHz.

7.
Opt Lett ; 42(2): 271-274, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28081090

ABSTRACT

We address the challenge of increasing the bandwidth of high-finesse femtosecond enhancement cavities and demonstrate a broad spectrum spanning 1800 cm-1 (195 nm) at -10 dB around a central wavelength of 1050 nm in an EC with an average finesse exceeding 300. This will benefit a host of spectroscopic applications, including transient absorption spectroscopy, direct frequency comb spectroscopy, and Raman spectroscopy. The pulse circulating in the EC is composed of only 5.4 optical cycles, at a kilowatt-level average power. Together with a suitable gating technique, this paves the way to the efficient generation of multi-megahertz-repetition-rate isolated extreme ultraviolet attosecond pulses via intracavity high-order harmonic generation.

8.
Appl Phys B ; 123(1): 17, 2017.
Article in English | MEDLINE | ID: mdl-32214687

ABSTRACT

We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to ~30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

9.
Opt Lett ; 40(10): 2165-8, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26393690

ABSTRACT

The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers. The combination of pulse duration, power, and zero phase slip constitutes a crucial step toward the generation of attosecond pulses at multi-10-MHz repetition rates. In addition, this control affords the enhancement of pulses generated by difference-frequency mixing, e.g., for mid-infrared spectroscopy.

10.
Phys Rev Lett ; 115(2): 023902, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26207470

ABSTRACT

We combine high-finesse optical resonators and spatial-spectral interferometry to a highly phase-sensitive investigation technique for nonlinear light-matter interactions. We experimentally validate an ab initio model for the nonlinear response of a resonator housing a gas target, permitting the global optimization of intracavity conversion processes like high-order harmonic generation. We predict the feasibility of driving intracavity high-order harmonic generation far beyond intensity limitations observed in state-of-the-art systems by exploiting the intracavity nonlinearity to compress the pulses in time.

11.
Opt Lett ; 40(5): 843-6, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25723447

ABSTRACT

Thermal lensing poses a serious challenge for the power scaling of enhancement cavities, in particular when these contain transmissive elements. We demonstrate the compensation of the lensing induced by thermal deformations of the cavity mirrors with the thermal lensing in a thin Brewster plate. Using forced convection to fine-tune the lensing in the plate, we achieve average powers of up to 160 kW for 250-MHz-repetition-rate picosecond pulses with a power-independent mode size. Furthermore, we show that the susceptibility of the cavity mode size to thermal lensing allows highly sensitive absorption measurements.

12.
Opt Lett ; 39(9): 2595-8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784054

ABSTRACT

We investigate power scaling of ultrashort-pulse enhancement cavities. We propose a model for the sensitivity of a cavity design to thermal deformations of the mirrors due to the high circulating powers. Using this model and optimized cavity mirrors, we demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz. These results represent an average power improvement of one order of magnitude compared to state-of-the-art systems with similar pulse durations and will thus benefit numerous applications such as the further scaling of tabletop sources of hard x rays (via Thomson scattering of relativistic electrons) and of soft x rays (via high harmonic generation).

13.
Phys Rev Lett ; 112(10): 103902, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24679296

ABSTRACT

We theoretically and experimentally investigate high-harmonic generation in a 78-MHz enhancement cavity with a transverse mode having on-axis intensity maxima at the focus and minima at an opening in the following mirror. We find that the conversion efficiency is comparable to that achievable with a Gaussian mode, whereas the output coupling efficiency can be significantly improved over any other demonstrated technique. This approach offers additional power scaling advantages and additional degrees of freedom in shaping the harmonic emission, paving the way to high-power extreme-ultraviolet frequency combs and the generation of multi-MHz repetition-rate-isolated attosecond pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...