Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 104(10): 6298-6310, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38501745

ABSTRACT

BACKGROUND: The celiac population usually struggle finding nutritive gluten-free (GF) baked goods. GF foods can be improved using legume flours. Eleven GF cake formulations were elaborated according to different percentages of lentil flour (LF), corn flour (CF) and rice flour (RF) using a simplex lattice design. Water holding capacity and particle size of flours were evaluated. Moisture, aw, pH, specific volume, texture profile, relaxation, color and alveolar characteristics were determined for crumbs of all formulations. An optimization process was used to enhance the technological and nutritional attributes, selecting the three best formulations containing LF: 46% LF + 54% RF (CLF+RF); 49% LF + 51% CF (CLF+CF); and 100% LF (CLF), evaluated in their proximal composition and sensory characteristics. Linear and quadratic models for predicting the behavior of GF lentil cakes were obtained. RESULTS: LF and CF could favor water incorporation and show more resistance to enzymatic digestion than RF. Formulations with LF showed an improvement in specific volume and alveolar parameters, while use of RF led to better cohesiveness, elasticity and resilience but with a deterioration in chewiness and firmness. CLF can be labeled as high in protein and fiber and presented the lowest amounts of lipids, carbohydrates and energy content. Consumer preference leaned towards CLF+RF. CONCLUSION: It was possible to elaborate GF cakes using LF, obtaining nutritive products that can be offered to people intolerant to gluten ingestion. © 2024 Society of Chemical Industry.


Subject(s)
Diet, Gluten-Free , Flour , Glutens , Lens Plant , Nutritive Value , Lens Plant/chemistry , Humans , Flour/analysis , Glutens/chemistry , Glutens/analysis , Celiac Disease/diet therapy , Zea mays/chemistry , Seeds/chemistry , Oryza/chemistry , Food Handling/methods , Adult , Taste , Male , Female
2.
Foods ; 12(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37107440

ABSTRACT

Protein-based foods based on sweet lupine are gaining the attention of industry and consumers on account of their being one of the legumes with the highest content of proteins (28-48%). Our objective was to study the thermal properties of two lupine flours (Misak and Rumbo) and the influence of different amounts of lupine flour (0, 10, 20 and 30%) incorporations on the hydration and rheological properties of dough and bread quality. The thermograms of both lupine flours showed three peaks at 77-78 °C, 88-89 °C and 104-105 °C, corresponding to 2S, 7S and 11S globulins, respectively. For Misak flour, higher energy was needed to denature proteins in contrast to Rumbo flour, which may be due to its higher protein amount (50.7% vs. 34.2%). The water absorption of dough with 10% lupine flour was lower than the control, while higher values were obtained for dough with 20% and 30% lupine flour. In contrast, the hardness and adhesiveness of the dough were higher with 10 and 20% lupine flour, but for 30%, these values were lower than the control. However, no differences were observed for G', G″ and tan δ parameters between dough. In breads, the protein content increased ~46% with the maximum level of lupine flour, from 7.27% in wheat bread to 13.55% in bread with 30% Rumbo flour. Analyzing texture parameters, the chewiness and firmness increased with incorporations of lupine flour with respect to the control sample while the elasticity decreased, and no differences were observed for specific volume. It can be concluded that breads of good technological quality and high protein content could be obtained by the inclusion of lupine flours in wheat flour. Therefore, our study highlights the great technological aptitude and the high nutritional value of lupine flours as ingredients for the breadmaking food industry.

3.
Food Sci Technol Int ; : 10820132221137619, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352548

ABSTRACT

Mixed gels of carrageenan (Car) and caprine whey protein concentrate (WPCc) (pH 7) were studied and compared with those prepared with Car and commercial bovine whey protein concentrate (WPCb). Dynamic rheology studies indicate that gels with WPCc were weaker (lower G') than those made with WPCb. However, textural parameters such as, hardness, springiness and cohesiveness were similar in both type of gels. The addition of CaCl2 incremented the elastic modulus (G'), hardness and adhesiveness of gels. The samples with caprine whey showed higher water holding capacity than samples with bovine whey. Confocal laser scanning microscope images of the gels, showed very different aspects according to the type of WPC used: WPCc-Car gels exhibited aggregates of proteins that interrupt the carrageenan network, while WPCb-Car gels showed a homogeneous appearance with proteins distributed throughout all the matrix.

4.
Food Sci Technol Int ; 28(5): 388-396, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34000863

ABSTRACT

Amaranth flour from germinated (GA) and non-germinated (A) seeds (0%-C, 5%, 15%, 25%) were mixed with wheat flour for breadmaking. Fermentation parameters of dough (time-tf, maximum volume-Vmax) were obtained. Specific volume (Vsp) of breads, crust color, texture and relaxation of crumb were analyzed. A high amount of germinated amaranth flour decreased Vmax and increased tf, obtaining breads with low Vsp and darkness crust. A firmed and chewy crumb, although with a more aerated structure (high area occupied by alveoli) was obtained. The GA25 bread presented the softer crumb. The elastic modulus-E1 of crumb increased and the relaxation time-T1 decreased with higher amounts of amaranth flour, suggesting the formation of a more structured crumb; mainly in the case of non-germinated amaranth flour. Wheat flour resisted the inclusion of 25% of germinated amaranth seeds (GA25) without substantial changes in bread quality.


Subject(s)
Bread , Flour , Bread/analysis , Fermentation , Flour/analysis , Seeds/chemistry , Triticum/chemistry
5.
J Food Sci Technol ; 58(3): 921-930, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33678875

ABSTRACT

Pistachio flour obtained from oil industry was nutritionally characterized for use as food ingredient in functional foods. Proximal composition, jointly with mineral content, amino acids and fatty acid profile were studied. In addition, different components present in this food ingredient have been analyzed by attenuated total reflectance Fourier transform infrared spectroscopy and thermal properties of proteins were evaluated by differential scanning calorimetry. This flour presented high mineral content such as potassium, phosphorus, magnesium and calcium. Moreover, high amount of unsaturated fatty acids, mainly oleic and linoleic were found. Secondary structure of proteins mainly was formed by parallel ß-sheet and α-helix. In the by-product, pistachio protein is in a native state and is able to be denatured at temperatures higher than 100 °C. Therefore, food processing of this ingredient can affect the structure of components.

6.
J Food Sci Technol ; 54(1): 153-163, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28242913

ABSTRACT

The specific aim of this work was to study the capability of a carob protein isolate (CPI) to produce self-supporting gels when subjected to a thermal treatment. CPI aqueous dispersions (10, 20 and 30 wt% protein basis) at three different pH values (2, 6 and 10) were subjected to a heating/cooling process (95 °C-30 min/4 °C-24 h) leading to the formation of self-supporting gels. Those gels were characterized for dynamic rheological properties; water holding capacity (WHC); textural properties; extractability in different media; scanning electron microscopy; and SDS-PAGE profiles of the soluble proteins. The results demonstrated that self-supporting CPI gels can only be obtained at concentrations higher than 20 wt%, being favoured at extreme pH values, especially at alkaline pH. At pH 10, gels with higher dynamic elastic and hardness properties and appropriate WHC were formed due to the promotion of disulphide bonds formation. Thus, if higher rheological properties and hardness are required for thermally treated CPI gels, alkaline pH conditions that favour hydrophobic interactions and disulphide bonding should be selected.

7.
J Food Sci Technol ; 53(1): 491-500, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26787968

ABSTRACT

The objective of this work was to study quality parameters of enriched wheat bread with calcium citrate (Ca3CI2) or lactate (CaLA2) and inulin (In), also to optimize bread formulation. Fermentation time (tf), specific volume (Vs), browning index of crust (BI) and crumb properties (moisture, alveolus, texture) were studied. Generally, tf and Vs decreased with prebiotic increment. Ca3CI2 did not change Vs at equal inulin quantity, whereas with CaLA2 smaller breads were obtained (at 6.5 % In). Moisture of crumbs decreased with an increase in Ca3CI2 (at ≤ 6.5 %); while for CaLA2 was more influenced by the prebiotic. Up to 6.5 % In, the addition of both salts decreased crumb firmness and increased cohesiveness. Using a desirability function, the optimum calcium-prebiotic bread obtained with Ca3CI2 contained 2.40 g/kg Ca and 7.49 % In and with CaLA2 presented 1.33 g/kg Ca and 4.68 % In. Breads of high-quality with higher calcium and prebiotic quantity were able to obtain with Ca3CI2.

8.
Article in English | MEDLINE | ID: mdl-21458365

ABSTRACT

Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.


Subject(s)
Emulsifying Agents/chemistry , Glutens/chemistry , Spectrum Analysis, Raman/methods , Amides/chemistry , Disulfides/chemistry , Triticum/chemistry , Tryptophan/chemistry , Tyrosine/chemistry , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...