Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36296051

ABSTRACT

The laser ultrasound (LU) technique has been used to determine dispersion curves for surface acoustic waves (SAW) propagating in AlScN/Al2O3 systems. Polar and non-polar Al0.77Sc0.23N thin films were prepared by magnetron sputter epitaxy on Al2O3 substrates and coated with a metal layer. SAW dispersion curves have been measured for various propagation directions on the surface. This is easily achieved in LU measurements since no additional surface structures need to be fabricated, which would be required if elastic properties are determined with the help of SAW resonators. Variation of the propagation direction allows for efficient use of the system's anisotropy when extracting information on elastic properties. This helps to overcome the complexity caused by a large number of elastic constants in the film material. An analysis of the sensitivity of the SAW phase velocities (with respect to the elastic moduli and their dependence on SAW propagation direction) reveals that the non-polar AlScN films are particularly well suited for the extraction of elastic film properties. Good agreement is found between experiment and theoretical predictions, validating LU as a non-destructive and fast technique for the determination of elastic constants of piezoelectric thin films.

2.
Ultrasonics ; 71: 278-287, 2016 09.
Article in English | MEDLINE | ID: mdl-27447889

ABSTRACT

The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized.

3.
Ultrasonics ; 70: 75-83, 2016 08.
Article in English | MEDLINE | ID: mdl-27135188

ABSTRACT

Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges.

SELECTION OF CITATIONS
SEARCH DETAIL
...