Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Biochem Biotechnol ; 173(5): 1038-56, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752938

ABSTRACT

Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ratio of 4:1 or higher of thermostable enzymes gave the maximal CBH-EG synergy in the hydrolysis of hydrothermally pretreated wheat straw. The composition of optimal enzyme mixtures depended clearly on the substrate and on the enzyme system studied. The optimal enzyme mixture of thermostable enzymes was dominated by Cel7A and required a relatively high amount of xylanase, whereas with T. reesei enzymes, the high proportion of Cel7B appeared to provide the required xylanase activity. The main effect of the pretreatment method was that the required proportion of xylanase was higher and the proportion of Cel7A lower in the optimized mixture for hydrolysis of alkaline oxidised bagasse than steam-exploded bagasse. In prolonged hydrolyses, less Cel7A was generally required in the optimal mixture. Five-component mixtures of thermostable enzymes showed comparable hydrolysis yields to those of commercial enzyme mixtures.


Subject(s)
Biomass , Glycoside Hydrolases/metabolism , Lignin/metabolism , Temperature , Cellulose/chemistry , Cellulose/metabolism , Enzyme Stability , Hydrolysis , Lignin/chemistry , Oxidation-Reduction , Saccharum/chemistry , Statistics as Topic , Steam , Trichoderma/enzymology , Triticum/chemistry
2.
Biotechnol Biofuels ; 7(1): 27, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24559384

ABSTRACT

BACKGROUND: Enzymes still comprise a major part of ethanol production costs from lignocellulose raw materials. Irreversible binding of enzymes to the residual substrate prevents their reuse and no efficient methods for recycling of enzymes have so far been presented. Cellulases without a carbohydrate-binding module (CBM) have been found to act efficiently at high substrate consistencies and to remain non-bound after the hydrolysis. RESULTS: High hydrolysis yields could be obtained with thermostable enzymes of Thermoascus aurantiacus containing only two main cellulases: cellobiohydrolase I (CBH I), Cel7A and endoglucanase II (EG II), Cel5A. The yields were decreased by only about 10% when using these cellulases without CBM. A major part of enzymes lacking CBM was non-bound during the most active stage of hydrolysis and in spite of this, produced high sugar yields. Complementation of the two cellulases lacking CBM with CBH II (CtCel6A) improved the hydrolysis. Cellulases without CBM were more sensitive during exposure to high ethanol concentration than the enzymes containing CBM. Enzymes lacking CBM could be efficiently reused leading to a sugar yield of 90% of that with fresh enzymes. The applicability of cellulases without CBM was confirmed under industrial ethanol production conditions at high (25% dry matter (DM)) consistency. CONCLUSIONS: The results clearly show that cellulases without CBM can be successfully used in the hydrolysis of lignocellulose at high consistency, and that this approach could provide new means for better recyclability of enzymes. This paper provides new insight into the efficient action of CBM-lacking cellulases. The relationship of binding and action of cellulases without CBM at high DM consistency should, however, be studied in more detail.

3.
Enzyme Microb Technol ; 53(5): 315-21, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24034430

ABSTRACT

Non-productive cellulase adsorption onto lignin is a major inhibitory mechanism preventing enzymatic hydrolysis of lignocellulosic feedstocks. Therefore, understanding of enzyme-lignin interactions is essential for the development of enzyme mixtures and processes for lignocellulose hydrolysis. We have studied cellulase-lignin interactions using model enzymes, Melanocarpus albomyces Cel45A endoglucanase (MaCel45A) and its fusions with native and mutated carbohydrate-binding modules (CBMs) from Trichoderma reesei Cel7A. Binding of MaCel45A to lignin was dependent on pH in the presence and absence of the CBM; at high pH, less enzyme bound to isolated lignins. Potentiometric titration of the lignin preparations showed that negatively charged groups were present in the lignin samples and that negative charge in the samples was increased with increasing pH. The results suggest that electrostatic interactions contributed to non-productive enzyme adsorption: Reduced enzyme binding at high pH was presumably due to repulsive electrostatic interactions between the enzymes and lignin. The CBM increased binding of MaCel45A to the isolated lignins only at high pH. Hydrophobic interactions are probably involved in CBM binding to lignin, because the same aromatic amino acids that are essential in CBM-cellulose interaction were also shown to contribute to lignin-binding.


Subject(s)
Cellulase/chemistry , Cellulase/metabolism , Lignin/metabolism , Adsorption , Catalytic Domain/genetics , Cellulase/genetics , Cellulose/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Lignin/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sordariales/enzymology , Sordariales/genetics , Static Electricity , Trichoderma/enzymology , Trichoderma/genetics
4.
Bioresour Technol ; 143: 196-203, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23796604

ABSTRACT

The role of CBM in two fungal model cellulase systems, consisting of Cel7A and Cel5A, from Trichoderma reesei and Thermoascus aurantiacus, were compared in the hydrolysis of various substrates. For comparison, family-1 CBM's were introduced to the T. aurantiacus and removed from the T. reesei enzymes. Especially at high dry matter consistencies of lignocellulosic substrates, pretreated wheat straw and spruce, the T. aurantiacus enzymes lacking CBM outperformed the enzymes carrying the CBM. In these conditions, the CBM-less enzymes from both organisms obviously recognized and bound to the substrate at higher probability than in dilute systems. Avoiding the unproductive binding to lignin caused by the CBMs obviously enhanced the hydrolytic performance. The lignin binding effect was, however, not entirely caused by the CBM, but also by the different structures and affinities of the core enzymes to lignin. Due to decreased binding, the CBM-less enzymes would allow reuse, potentially decreasing hydrolysis costs.


Subject(s)
Bacterial Proteins/metabolism , Carbohydrate Metabolism , Thermoascus/metabolism , Trichoderma/metabolism , Adsorption , Hydrolysis , Substrate Specificity
5.
Biotechnol Biofuels ; 4: 12, 2011 May 18.
Article in English | MEDLINE | ID: mdl-21592333

ABSTRACT

BACKGROUND: In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates. RESULTS: The xylanases from Nonomuraea flexuosa (Nf Xyn11A) and from Thermoascus aurantiacus (Ta Xyn10A) were purified by heat treatment and gel permeation chromatography. Ta Xyn10A exhibited higher hydrolytic efficiency than Nf Xyn11A toward birchwood glucuronoxylan, insoluble oat spelt arabinoxylan and hydrothermally pretreated wheat straw, and it produced more reducing sugars. Oligosaccharides from xylobiose to xylopentaose as well as higher degree of polymerization (DP) xylooligosaccharides (XOSs), but not xylose, were released during the initial hydrolysis of xylans by Nf Xyn11A, indicating its potential for the production of XOS. The mode of action of Nf Xyn11A and Ta Xyn10A on glucuronoxylan and arabinoxylan showed typical production patterns of endoxylanases belonging to GH11 and GH10, respectively. CONCLUSIONS: Because of its high catalytic activity and good thermostability, T. aurantiacus xylanase shows great potential for applications aimed at total hydrolysis of lignocellulosic materials for platform sugars, whereas N. flexuosa xylanase shows more significant potential for the production of XOSs.

6.
Biotechnol Biofuels ; 4(1): 2, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21269447

ABSTRACT

BACKGROUND: Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases), resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties) connected with high initial solid loadings in the lignocellulose to ethanol process. RESULTS: The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. CONCLUSIONS: Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter) hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C.

7.
Biotechnol Bioeng ; 101(3): 515-28, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18512263

ABSTRACT

As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH-7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate-limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate-binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4-10 degrees C) and more active (two- to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45 degrees C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70 degrees C, however, was the 2-module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three-dimensional homology models of these enzymes.


Subject(s)
Acremonium/enzymology , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Chaetomium/enzymology , Eurotiales/enzymology , Hot Temperature , Binding Sites , Cellobiose/pharmacology , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cloning, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Stability , Models, Molecular , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trichoderma/enzymology
8.
Adv Biochem Eng Biotechnol ; 108: 121-45, 2007.
Article in English | MEDLINE | ID: mdl-17589813

ABSTRACT

Thermostable enzymes offer potential benefits in the hydrolysis of lignocellulosic substrates; higher specific activity decreasing the amount of enzymes, enhanced stability allowing improved hydrolysis performance and increased flexibility with respect to process configurations, all leading to improvement of the overall economy of the process. New thermostable cellulase mixtures were composed of cloned fungal enzymes for hydrolysis experiments. Three thermostable cellulases, identified as the most promising enzymes in their categories (cellobiohydrolase, endoglucanase and beta-glucosidase), were cloned and produced in Trichoderma reesei and mixed to compose a novel mixture of thermostable cellulases. Thermostable xylanase was added to enzyme preparations used on substrates containing residual hemicellulose. The new optimised thermostable enzyme mixtures were evaluated in high temperature hydrolysis experiments on technical steam pretreated raw materials: spruce and corn stover. The hydrolysis temperature could be increased by about 10-15 degrees C, as compared with present commercial Trichoderma enzymes. The same degree of hydrolysis, about 90% of theoretical, measured as individual sugars, could be obtained with the thermostable enzymes at 60 degrees C as with the commercial enzymes at 45 degrees C. Clearly more efficient hydrolysis per assayed FPU unit or per amount of cellobiohydrolase I protein used was obtained. The maximum FPU activity of the novel enzyme mixture was about 25% higher at the optimum temperature at 65 degrees C, as compared with the highest activity of the commercial reference enzyme at 60 degrees C. The results provide a promising basis to produce and formulate improved enzyme products. These products can have high temperature stability in process conditions in the range of 55-60 degrees C (with present industrial products at 45-50 degrees C) and clearly improved specific activity, essentially decreasing the protein dosage required for an efficient hydrolysis of lignocellulosic substrates. New types of process configurations based on thermostable enzymes are discussed.


Subject(s)
Biotechnology/trends , Cellulose/chemistry , Energy-Generating Resources , Enzymes/chemistry , Ethanol/chemistry , Industry/trends , Lignin/chemistry , Biomass , Enzyme Stability , Hydrolysis , Temperature
9.
FEBS J ; 274(7): 1691-700, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17381511

ABSTRACT

The extracellular bga1-encoded beta-galactosidase of Hypocrea jecorina (Trichoderma reesei) was overexpressed under the pyruvat kinase (pki1) promoter region and purified to apparent homogeneity. The monomeric enzyme is a glycoprotein with a molecular mass of 118.8 +/- 0.5 kDa (MALDI-MS) and an isoelectric point of 6.6. Bga1 is active with several disaccharides, e.g. lactose, lactulose and galactobiose, as well as with aryl- and alkyl-beta-D-galactosides. Based on the catalytic efficiencies, lactitol and lactobionic acid are the poorest substrates and o-nitrophenyl-beta-D-galactoside and lactulose are the best. The pH optimum for the hydrolysis of galactosides is approximately 5.0, and the optimum temperature was found to be 60 degrees C. Bga1 is also capable of releasing D-galactose from beta-galactans and is thus actually a galacto-beta-D-galactanase. beta-Galactosidase is inhibited by its reaction product D-galactose and the enzyme also shows a significant transferase activity which results in the formation of galacto-oligosaccharides.


Subject(s)
Fungal Proteins/chemistry , Glycoside Hydrolases/chemistry , Hypocrea/enzymology , beta-Galactosidase/chemistry , Catalysis , Disaccharides/chemistry , Disaccharides/metabolism , Enzyme Stability , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Galactans/chemistry , Galactans/metabolism , Galactose/analogs & derivatives , Galactose/chemistry , Galactose/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycoside Hydrolases/metabolism , Glycosylation , Hydrogen-Ion Concentration , Hypocrea/chemistry , Kinetics , Lactose/chemistry , Lactose/metabolism , Lactulose/chemistry , Lactulose/metabolism , Molecular Weight , Nitrophenylgalactosides/chemistry , Nitrophenylgalactosides/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Temperature , beta-Galactosidase/isolation & purification , beta-Galactosidase/metabolism
10.
Appl Environ Microbiol ; 73(10): 3215-24, 2007 May.
Article in English | MEDLINE | ID: mdl-17384308

ABSTRACT

We have previously shown that the Nonomuraea flexuosa Xyn11A polypeptides devoid of the carbohydrate binding module (CBM) have better thermostability than the full-length xylanase and are effective in bleaching of pulp. To produce an enzyme preparation useful for industrial applications requiring high temperature, the region encoding the CBM was deleted from the N. flexuosa xyn11A gene and the truncated gene was expressed in Trichoderma reesei. The xylanase sequence was fused to the T. reesei mannanase I (Man5A) signal sequence or 3' to a T. reesei carrier polypeptide, either the Man5A core/hinge or the cellulose binding domain (CBD) of cellobiohydrolase II (Cel6A, CBHII). The gene and fusion genes were expressed using the cellobiohydrolase 1 (cel7A, cbh1) promoter. Single-copy isogenic transformants in which the expression cassette replaced the cel7A gene were cultivated and analyzed. The transformants expressing the truncated N. flexuosa xyn11A produced clearly increased amounts of both the xylanase/fusion mRNA and xylanase activity compared to the corresponding strains expressing the full-length N. flexuosa xyn11A. The transformant expressing the cel6A CBD-truncated N. flexuosa xyn11A produced about 1.9 g liter-1 of the xylanase in laboratory-scale fermentations. The xylanase constituted about 25% of the secreted proteins. The production of the truncated xylanase did not induce the unfolded protein response (UPR) pathway. However, the UPR was induced when the full-length N. flexuosa xyn11A with an exact fusion to the cel7A terminator was expressed. We suggest that the T. reesei folding/secretion machinery is not able to cope properly with the bacterial CBM when the mRNA of the full-length N. flexuosa xyn11A is efficiently translated.


Subject(s)
Actinomycetales/enzymology , Endo-1,4-beta Xylanases/biosynthesis , Recombinant Proteins/biosynthesis , Sequence Deletion , Trichoderma/genetics , Trichoderma/metabolism , Actinomycetales/genetics , Endo-1,4-beta Xylanases/genetics , Gene Expression , Genes, Bacterial , Protein Folding , Protein Sorting Signals , Protein Structure, Tertiary/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Proteins/genetics , Xylans/metabolism
11.
Appl Biochem Biotechnol ; 137-140(1-12): 195-204, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18478388

ABSTRACT

To develop functional enzymes in cellulose hydrolysis at or above 70 degrees C the cellobiohydrolase (CBHI/Cel7A) of Thermoascus aurantiacus was cloned and expressed in Trichoderma reesei Rut-C30 under the strong cbh1 promoter. Cellulase production of the parental strain and the novel strain (RF6026) was examined in submerged fermentation experiments using various carbon sources, which were lactose, Solka Floc 200 cellulose powder, and steam pretreated corn stover. An industrially feasible production medium was used containing only distiller's spent grain, KH(2)PO(4), and (NH(4))(2)SO(4). Enzyme production was followed by measurements of protein concentration, total cellulase enzyme activity (filter paper activity), beta-glucosidase activity, CBHI activity, and endogenase I (EGI) activity. The Thermoascus CBHI/Cel7A activity was taken as an indication of the heterologous gene expression under the cbh1 promoter.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Carbon Compounds, Inorganic/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Trichoderma/genetics , Trichoderma/metabolism , Zea mays/microbiology , Genetic Enhancement/methods , Lactose/metabolism , Protein Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...