Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Article in English | MEDLINE | ID: mdl-39248004

ABSTRACT

PURPOSE OF REVIEW: There have been significant advancements in depth of anesthesia (DoA) technology. The Anesthesia Patient Safety Foundation recently published recommendations to use a DoA monitor in specific patient populations receiving general anesthesia. However, the universal use of DoA monitoring is not yet accepted. This review explores the current state of DoA monitors and their potential impact on patient safety. RECENT FINDINGS: We reviewed the current evidence for using a DoA monitor and its potential role in preventing awareness and preserving brain health by decreasing the incidence of postoperative delirium and postoperative cognitive dysfunction or decline (POCD). We also explored the evidence for use of DoA monitors in improving postoperative clinical indicators such as organ dysfunction, mortality and length of stay. We discuss the use of DoA monitoring in the pediatric population, as well as highlight the current limitations of DoA monitoring and the path forward. SUMMARY: There is evidence that DoA monitoring may decrease the incidence of awareness, postoperative delirium, POCD and improve several postoperative outcomes. In children, DoA monitoring may decrease the incidence of awareness and emergence delirium, but long-term effects are unknown. While there are key limitations to DoA monitoring technology, we argue that DoA monitoring shows great promise in improving patient safety in most, if not all anesthetic populations.

3.
Elife ; 132024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146208

ABSTRACT

Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.


Subject(s)
Electroencephalography , Models, Neurological , Humans , Electroencephalography/methods , Magnetoencephalography/methods , Brain/physiology , Bayes Theorem
4.
Nat Commun ; 15(1): 5788, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987558

ABSTRACT

The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Developmental changes in periodic peaks include (1) the presence and then absence of a 9-10 Hz alpha peak between 2-6 months, (2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and (3) the emergence of a low beta peak (12-20 Hz) in some infants after six months of age. We hypothesized that the emergence of the low beta peak may reflect maturation of thalamocortical network development. Infant anesthesia studies observe that GABA-modulating anesthetics do not induce thalamocortical mediated frontal alpha coherence until 10-12 months of age. Using a small cohort of infants (n = 23) with EEG before and during GABA-modulating anesthesia, we provide preliminary evidence that infants with a low beta peak have higher anesthesia-induced alpha coherence compared to those without a low beta peak.


Subject(s)
Brain , Electroencephalography , Humans , Infant , Male , Female , Child, Preschool , Brain/growth & development , Brain/drug effects , Brain/physiology , Child Development/physiology , Child Development/drug effects , Beta Rhythm/drug effects , Beta Rhythm/physiology , Thalamus/drug effects , Thalamus/physiology , Thalamus/growth & development , Anesthesia , Longitudinal Studies , Alpha Rhythm/drug effects , Alpha Rhythm/physiology
6.
Br J Anaesth ; 132(3): 607-615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184474

ABSTRACT

BACKGROUND: Preoperative knowledge of surgical risks can improve perioperative care and patient outcomes. However, assessments requiring clinician examination of patients or manual chart review can be too burdensome for routine use. METHODS: We conducted a multicentre retrospective study of 243 479 adult noncardiac surgical patients at four hospitals within the Mass General Brigham (MGB) system in the USA. We developed a machine learning method using routinely collected coding and patient characteristics data from the electronic health record which predicts 30-day mortality, 30-day readmission, discharge to long-term care, and hospital length of stay. RESULTS: Our method, the Flexible Surgical Set Embedding (FLEX) score, achieved state-of-the-art performance to identify comorbidities that significantly contribute to the risk of each adverse outcome. The contributions of comorbidities are weighted based on patient-specific context, yielding personalised risk predictions. Understanding the significant drivers of risk of adverse outcomes for each patient can inform clinicians of potential targets for intervention. CONCLUSIONS: FLEX utilises information from a wider range of medical diagnostic and procedural codes than previously possible and can adapt to different coding practices to accurately predict adverse postoperative outcomes.


Subject(s)
Current Procedural Terminology , International Classification of Diseases , Adult , Humans , Retrospective Studies , Patient Readmission , Perioperative Care
7.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37546851

ABSTRACT

Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100's to 1000's. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post-hoc manner from univariate analyses, or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgement in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as Oscillation Component Analysis (OCA). These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

8.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-37546863

ABSTRACT

The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with higher thalamocortical-dependent, anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.

9.
J Neurosurg Anesthesiol ; 36(2): 125-133, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37965706

ABSTRACT

BACKGROUND: Pharmacological tolerance is defined as a decrease in the effect of a drug over time, or the need to increase the dose to achieve the same effect. It has not been established whether repeated exposure to sevoflurane induces tolerance in children. METHODS: We conducted an observational study in children younger than 6 years of age scheduled for multiple radiotherapy sessions with sevoflurane anesthesia. To evaluate the development of sevoflurane tolerance, we analyzed changes in electroencephalographic spectral power at induction, across sessions. We fitted individual and group-level linear regression models to evaluate the correlation between the outcomes and sessions. In addition, a linear mixed-effect model was used to evaluate the association between radiotherapy sessions and outcomes. RESULTS: Eighteen children were included and the median number of radiotherapy sessions per child was 28 (interquartile range: 10 to 33). There was no correlation between induction time and radiotherapy sessions. At the group level, the linear mixed-effect model showed, in a subgroup of patients, that alpha relative power and spectral edge frequency 95 were inversely correlated with the number of anesthesia sessions. Nonetheless, this subgroup did not differ from the other subjects in terms of age, sex, or the total number of radiotherapy sessions. CONCLUSIONS: Our results suggest that children undergoing repeated anesthesia exposure for radiotherapy do not develop tolerance to sevoflurane. However, we found that a group of patients exhibited a reduction in the alpha relative power as a function of anesthetic exposure. These results may have implications that justify further studies.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Methyl Ethers , Child , Humans , Sevoflurane , Anesthetics, Inhalation/pharmacology , Methyl Ethers/adverse effects , Electroencephalography
10.
NPJ Digit Med ; 6(1): 209, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973817

ABSTRACT

Preoperative knowledge of expected postoperative pain can help guide perioperative pain management and focus interventions on patients with the greatest risk of acute pain. However, current methods for predicting postoperative pain require patient and clinician input or laborious manual chart review and often do not achieve sufficient performance. We use routinely collected electronic health record data from a multicenter dataset of 234,274 adult non-cardiac surgical patients to develop a machine learning method which predicts maximum pain scores on the day of surgery and four subsequent days and validate this method in a prospective cohort. Our method, POPS, is fully automated and relies only on data available prior to surgery, allowing application in all patients scheduled for or considering surgery. Here we report that POPS achieves state-of-the-art performance and outperforms clinician predictions on all postoperative days when predicting maximum pain on the 0-10 NRS in prospective validation, though with degraded calibration. POPS is interpretable, identifying comorbidities that significantly contribute to postoperative pain based on patient-specific context, which can assist clinicians in mitigating cases of acute pain.

11.
Res Sq ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37790544

ABSTRACT

The development of neural circuits over the first years of life has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, aperiodic and periodic EEG power features were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with thalamocortical connectivity sufficient for anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.

13.
Neuron ; 111(21): 3479-3495.e6, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37659409

ABSTRACT

What happens in the human brain when we are unconscious? Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted. Using intracranial recordings and direct electrical stimulation, we mapped global, network, and regional involvement during wake vs. arousable unconsciousness (sleep) vs. non-arousable unconsciousness (propofol-induced general anesthesia). Information integration and complex processing we`re reduced, while variability increased in any type of unconscious state. These changes were more pronounced during anesthesia than sleep and involved different cortical engagement. During sleep, changes were mostly uniformly distributed across the brain, whereas during anesthesia, the prefrontal cortex was the most disrupted, suggesting that the lack of arousability during anesthesia results not from just altered overall physiology but from a disconnection between the prefrontal and other brain areas. These findings provide direct evidence for different neural dynamics during loss of consciousness compared with loss of arousability.


Subject(s)
Consciousness , Propofol , Humans , Consciousness/physiology , Unconsciousness/chemically induced , Propofol/pharmacology , Brain/physiology , Anesthesia, General , Electroencephalography
14.
PLoS Comput Biol ; 19(8): e1011395, 2023 08.
Article in English | MEDLINE | ID: mdl-37639391

ABSTRACT

Linear parametric state-space models are a ubiquitous tool for analyzing neural time series data, providing a way to characterize the underlying brain dynamics with much greater statistical efficiency than non-parametric data analysis approaches. However, neural time series data are frequently time-varying, exhibiting rapid changes in dynamics, with transient activity that is often the key feature of interest in the data. Stationary methods can be adapted to time-varying scenarios by employing fixed-duration windows under an assumption of quasi-stationarity. But time-varying dynamics can be explicitly modeled by switching state-space models, i.e., by using a pool of state-space models with different dynamics selected by a probabilistic switching process. Unfortunately, exact solutions for state inference and parameter learning with switching state-space models are intractable. Here we revisit a switching state-space model inference approach first proposed by Ghahramani and Hinton. We provide explicit derivations for solving the inference problem iteratively after applying a variational approximation on the joint posterior of the hidden states and the switching process. We introduce a novel initialization procedure using an efficient leave-one-out strategy to compare among candidate models, which significantly improves performance compared to the existing method that relies on deterministic annealing. We then utilize this state inference solution within a generalized expectation-maximization algorithm to estimate model parameters of the switching process and the linear state-space models with dynamics potentially shared among candidate models. We perform extensive simulations under different settings to benchmark performance against existing switching inference methods and further validate the robustness of our switching inference solution outside the generative switching model class. Finally, we demonstrate the utility of our method for sleep spindle detection in real recordings, showing how switching state-space models can be used to detect and extract transient spindles from human sleep electroencephalograms in an unsupervised manner.


Subject(s)
Algorithms , Learning , Humans , Benchmarking , Brain , Data Analysis
15.
Br J Anaesth ; 131(3): 439-442, 2023 09.
Article in English | MEDLINE | ID: mdl-37611972

ABSTRACT

Electroencephalogram signatures associated with anaesthetic-induced loss of consciousness have been widely described in adult populations. A recent study helps verify our understanding of brain dynamics induced by anaesthetics in a paediatric population by describing a specific pattern in terms of an interaction of the phase of delta oscillations and the amplitude of alpha oscillations. This feature has potential translational implications for optimising future monitoring technologies.


Subject(s)
Anesthesiology , Anesthetics , Child , Humans , Anesthesia, General/adverse effects , Brain/diagnostic imaging , Consciousness , Electroencephalography
16.
J Neurophysiol ; 130(1): 86-103, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37314079

ABSTRACT

Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.


Subject(s)
Propofol , Humans , Propofol/adverse effects , Cortical Synchronization , Cerebral Cortex , Electroencephalography , Unconsciousness/chemically induced , Thalamus
17.
JAMA Surg ; 158(8): 854-864, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37314800

ABSTRACT

Importance: Opioids administered to treat postsurgical pain are a major contributor to the opioid crisis, leading to chronic use in a considerable proportion of patients. Initiatives promoting opioid-free or opioid-sparing modalities of perioperative pain management have led to reduced opioid administration in the operating room, but this reduction could have unforeseen detrimental effects in terms of postoperative pain outcomes, as the relationship between intraoperative opioid usage and later opioid requirements is not well understood. Objective: To characterize the association between intraoperative opioid usage and postoperative pain and opioid requirements. Design, Setting, and Participants: This retrospective cohort study evaluated electronic health record data from a quaternary care academic medical center (Massachusetts General Hospital) for adult patients who underwent noncardiac surgery with general anesthesia from April 2016 to March 2020. Patients who underwent cesarean surgery, received regional anesthesia, received opioids other than fentanyl or hydromorphone, were admitted to the intensive care unit, or who died intraoperatively were excluded. Statistical models were fitted on the propensity weighted data set to characterize the effect of intraoperative opioid exposures on primary and secondary outcomes. Data were analyzed from December 2021 to October 2022. Exposures: Intraoperative fentanyl and intraoperative hydromorphone average effect site concentration estimated using pharmacokinetic/pharmacodynamic models. Main Outcomes and Measures: The primary study outcomes were the maximal pain score during the postanesthesia care unit (PACU) stay and the cumulative opioid dose, quantified in morphine milligram equivalents (MME), administered during the PACU stay. Medium- and long-term outcomes associated with pain and opioid dependence were also evaluated. Results: The study cohort included a total of 61 249 individuals undergoing surgery (mean [SD] age, 55.44 [17.08] years; 32 778 [53.5%] female). Increased intraoperative fentanyl and intraoperative hydromorphone were both associated with reduced maximum pain scores in the PACU. Both exposures were also associated with a reduced probability and reduced total dosage of opioid administration in the PACU. In particular, increased fentanyl administration was associated with lower frequency of uncontrolled pain; a decrease in new chronic pain diagnoses reported at 3 months; fewer opioid prescriptions at 30, 90, and 180 days; and decreased new persistent opioid use, without significant increases in adverse effects. Conclusions and Relevance: Contrary to prevailing trends, reduced opioid administration during surgery may have the unintended outcome of increasing postoperative pain and opioid consumption. Conversely, improvements in long-term outcomes might be achieved by optimizing opioid administration during surgery.


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Adult , Humans , Female , Middle Aged , Male , Hydromorphone/therapeutic use , Retrospective Studies , Pain, Postoperative/drug therapy , Fentanyl/therapeutic use
18.
Nat Commun ; 14(1): 1748, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991011

ABSTRACT

Ketamine produces antidepressant effects in patients with treatment-resistant depression, but its usefulness is limited by its psychotropic side effects. Ketamine is thought to act via NMDA receptors and HCN1 channels to produce brain oscillations that are related to these effects. Using human intracranial recordings, we found that ketamine produces gamma oscillations in prefrontal cortex and hippocampus, structures previously implicated in ketamine's antidepressant effects, and a 3 Hz oscillation in posteromedial cortex, previously proposed as a mechanism for its dissociative effects. We analyzed oscillatory changes after subsequent propofol administration, whose GABAergic activity antagonizes ketamine's NMDA-mediated disinhibition, alongside a shared HCN1 inhibitory effect, to identify dynamics attributable to NMDA-mediated disinhibition versus HCN1 inhibition. Our results suggest that ketamine engages different neural circuits in distinct frequency-dependent patterns of activity to produce its antidepressant and dissociative sensory effects. These insights may help guide the development of brain dynamic biomarkers and novel therapeutics for depression.


Subject(s)
Ketamine , Propofol , Humans , Ketamine/pharmacology , Ketamine/therapeutic use , Propofol/pharmacology , N-Methylaspartate , Neurophysiology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Cerebral Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
19.
Anesth Analg ; 137(6): 1241-1249, 2023 12 01.
Article in English | MEDLINE | ID: mdl-36881544

ABSTRACT

BACKGROUND: Infants under spinal anesthesia appear to be sedated despite the absence of systemic sedative medications. In this prospective observational study, we investigated the electroencephalogram (EEG) of infants under spinal anesthesia and hypothesized that we would observe EEG features similar to those seen during sleep. METHODS: We computed the EEG power spectra and spectrograms of 34 infants undergoing infraumbilical surgeries under spinal anesthesia (median age 11.5 weeks postmenstrual age, range 38-65 weeks postmenstrual age). Spectrograms were visually scored for episodes of EEG discontinuity or spindle activity. We characterized the relationship between EEG discontinuity or spindles and gestational age, postmenstrual age, or chronological age using logistic regression analyses. RESULTS: The predominant EEG patterns observed in infants under spinal anesthesia were slow oscillations, spindles, and EEG discontinuities. The presence of spindles, observed starting at about 49 weeks postmenstrual age, was best described by postmenstrual age ( P =.002) and was more likely with increasing postmenstrual age. The presence of EEG discontinuities, best described by gestational age ( P = .015), was more likely with decreasing gestational age. These age-related changes in the presence of spindles and EEG discontinuities in infants under spinal anesthesia generally corresponded to developmental changes in the sleep EEG. CONCLUSIONS: This work illustrates 2 separate key age-dependent transitions in EEG dynamics during infant spinal anesthesia that may reflect the maturation of underlying brain circuits: (1) diminishing discontinuities with increasing gestational age and (2) the appearance of spindles with increasing postmenstrual age. The similarity of these age-dependent transitions under spinal anesthesia with transitions in the developing brain during physiological sleep supports a sleep-related mechanism for the apparent sedation observed during infant spinal anesthesia.


Subject(s)
Anesthesia, Spinal , Humans , Infant , Sleep/physiology , Electroencephalography , Brain/physiology , Gestational Age
20.
Proc Natl Acad Sci U S A ; 120(11): e2207831120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897972

ABSTRACT

During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.


Subject(s)
Propofol , Humans , Propofol/pharmacology , Consciousness , Electroencephalography , Brain , Thalamus , Unconsciousness/chemically induced , Neural Pathways , Cerebral Cortex
SELECTION OF CITATIONS
SEARCH DETAIL