Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6775, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880204

ABSTRACT

Nitrous oxide (N2O) is a potent climate gas, with its strong warming potential and ozone-depleting properties both focusing research on N2O sources. Although a sink for N2O through biological fixation has been observed in the Pacific, the regulation of N2O-fixation compared to canonical N2-fixation is unknown. Here we show that both N2O and N2 can be fixed by freshwater communities but with distinct seasonalities and temperature dependencies. N2O fixation appears less sensitive to temperature than N2 fixation, driving a strong sink for N2O in colder months. Moreover, by quantifying both N2O and N2 fixation we show that, rather than N2O being first reduced to N2 through denitrification, N2O fixation is direct and could explain the widely reported N2O sinks in natural waters. Analysis of the nitrogenase (nifH) community suggests that while only a subset is potentially capable of fixing N2O they maintain a strong, freshwater sink for N2O that could be eroded by warming.


Subject(s)
Fresh Water , Nitrous Oxide , Denitrification
2.
ACS Synth Biol ; 11(10): 3330-3342, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36194543

ABSTRACT

The past decade has seen the emergence of multidrug resistant pathogens as a leading cause of death worldwide, reigniting interest in the field of phage therapy. Modern advances in the genetic engineering of bacteriophages have enabled several useful results including host range alterations, constitutive lytic growth, and control over phage replication. However, the slow licensing process of genetically modified organisms clearly inhibits the rapid therapeutic application of novel engineered variants necessary to fight mutant pathogens that emerge throughout the course of a pandemic. As a solution to this problem, we propose the SpyPhage system where a "scaffold" bacteriophage is engineered to incorporate a SpyTag moiety on its capsid head to enable rapid postsynthetic modification of their surfaces with SpyCatcher-fused therapeutic proteins. As a proof of concept, through CRISPR/Cas-facilitated phage engineering and whole genome assembly, we targeted a SpyTag capsid fusion to K1F, a phage targeting the pathogenic strain Escherichia coli K1. We demonstrate for the first time the cell-free assembly and decoration of the phage surface with two alternative fusion proteins, SpyCatcher-mCherry-EGF and SpyCatcher-mCherry-Rck, both of which facilitate the endocytotic uptake of the phages by a urinary bladder epithelial cell line. Overall, our work presents a cell-free phage production pipeline for the generation of multiple phenotypically distinct phages with a single underlying "scaffold" genotype. These phages could become the basis of next-generation phage therapies where the knowledge-based engineering of numerous phage variants would be quickly achievable without the use of live bacteria or the need to repeatedly license novel genetic alterations.


Subject(s)
Bacteriophages , Phage Therapy , Epidermal Growth Factor/genetics , Bacteriophages/genetics , Genetic Engineering , Escherichia coli/genetics
3.
Sci Rep ; 12(1): 8931, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624131

ABSTRACT

Footrot has a major impact on health and productivity of sheep worldwide. The current paradigm for footrot pathogenesis is that physical damage to the interdigital skin (IDS) facilitates invasion of the essential pathogen Dichelobacter nodosus. The composition of the IDS microbiota is different in healthy and diseased feet, so an alternative hypothesis is that changes in the IDS microbiota facilitate footrot. We investigated the composition and diversity of the IDS microbiota of ten sheep, five that did develop footrot and five that did not (healthy) at weekly intervals for 20 weeks. The IDS microbiota was less diverse on sheep 2 + weeks before they developed footrot than on healthy sheep. This change could be explained by only seven of > 2000 bacterial taxa detected. The incubation period of footrot is 8-10 days, and there was a further reduction in microbial diversity on feet that developed footrot in that incubation period. We conclude that there are two stages of dysbiosis in footrot: the first predisposes sheep to footrot and the second occurs in feet during the incubation of footrot. These findings represent a step change in our understanding of the role of the IDS microbiota in footrot pathogenesis.


Subject(s)
Dichelobacter nodosus , Foot Rot , Microbiota , Animals , Foot , Sheep , Skin
4.
Front Vet Sci ; 8: 713927, 2021.
Article in English | MEDLINE | ID: mdl-34485440

ABSTRACT

AprV2 and aprB2 are variants of the apr gene of Dichelobacter nodosus, the cause of footrot in sheep. They are putative markers for severe and mild disease expression. The aim of our study was to investigate the distribution of aprV2 and aprB2 in flocks with and without footrot. Our hypotheses were that both strains are present in endemically affected flocks, with aprB2 and aprV2 associated with mild and virulent phenotypes respectively but that D. nodosus is not present in flocks without footrot. Alternatively, aprB2 persists in flocks without footrot. Despite extensive searching over 3 years only three flocks of sheep without footrot were identified. D. nodosus was not detected in these three flocks. In one further flock, only mild interdigital dermatitis was observed, and only aprB2 was detected. Twenty-four flocks with endemic footrot of all severities were sampled on three occasions and all were positive for D. nodosus and the aprV2 variant; aprB2 was detected in only 11 of these flocks. AprB2 was detected as a co-infection with aprV2 in the 22% of samples positive for aprB2 and was more likely in mild footrot phenotypes than severe. Dichelobacter nodosus serogroups were not associated with footrot phenotype. We conclude that D. nodosus, even aprB2 strains, do not persist in flocks in the absence of footrot. Our results support the hypothesis that aprB2 is associated with mild footrot phenotypes. Finally, we conclude that given the small number of flocks without footrot that were identified, footrot is highly endemic in English sheep flocks.

5.
Front Vet Sci ; 7: 581342, 2020.
Article in English | MEDLINE | ID: mdl-33344526

ABSTRACT

Dichelobacter nodosus is the essential pathogen in ovine footrot, an important cause of lameness in sheep that reduces productivity and welfare. The aim of this study was to investigate the feasibility of using multiple locus variable number tandem repeat analysis (MLVA) developed to investigate isolates to understand the molecular epidemiology of Dichelobacter nodosus in ovine footrot by investigation of communities of strains. MLVA sensitivity was improved by optimizing PCR conditions to 100% specificity for D. nodosus. The improved MLVA scheme was used to investigate non-cultured DNA purified from swabs (swab DNA) and cultured DNA from isolates (isolate DNA) from 152 foot and 38 gingival swab samples from 10 sheep sampled on four occasions in a longitudinal study. Isolate DNA was obtained from 6/152 (3.9%) feet and 5/6 yielded complete MLVA profiles, three strains were detected. Two of the three isolate strains were also detected in isolate DNA from 2 gingival crevice cultures. Complete MLVA profiles were obtained from swab DNA from 39 (25.7%) feet. There were 22 D. nodosus community types that were comprised of 7 single strain and 15 multi-strain communities. Six community types were detected more than once and three of these were detected on the same four sheep and the same two feet over time. There were a minimum of 17 and a maximum of 25 strain types of D. nodosus in the study. The three isolate strain types were also the most frequently detected strain types in swab DNA. We conclude that the MLVA from swab DNA detects the same strains as culture, is much more sensitive and can be used to describe and differentiate communities and strains on sheep, feet and over time. It is therefore a sensitive molecular tool to study D. nodosus strains directly from DNA without culture.

6.
Sci Rep ; 10(1): 16823, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033301

ABSTRACT

We present the largest and most representative study of the serological diversity of Dichelobacter nodosus in England. D. nodosus causes footrot and is one of the top five globally important diseases of sheep. The commercial vaccine, containing nine serogroups, has low efficacy compared with bivalent vaccines. Our aim was to investigate the prevalence and distribution of serogroups of D. nodosus in England to elucidate whether a bivalent vaccine could protect the national flock. Farmers from 164 flocks submitted eight interdigital swabs from eight, preferably diseased, sheep. All serogroups, A-I, were detected by PCR in 687/1150 D. nodosus positive swabs, with a prevalence of 2.6-69.3% of positive swabs per serogroup. There was a median of two serogroups per flock (range 0-6). Serogroups were randomly distributed between, but clustered within, flocks, with 50 combinations of serogroups across flocks. H and B were the most prevalent serogroups, present in > 60% of flocks separately but in only 27% flocks together. Consequently, a bivalent vaccine targeting these two serogroups would protect 27% of flocks fully (if only H and B present) and partially, if more serogroups were present in the flock. We conclude that one bivalent vaccine would not protect the national flock against footrot and, with 50 combinations of serogroups in flocks, flock-specific vaccines are necessary.


Subject(s)
Dichelobacter nodosus/genetics , Foot Rot/microbiology , Serogroup , Sheep Diseases/microbiology , Animals , England/epidemiology , Female , Foot Rot/epidemiology , Polymerase Chain Reaction/veterinary , Serotyping/veterinary , Sheep/microbiology , Sheep Diseases/epidemiology
7.
Prev Vet Med ; 173: 104801, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31683188

ABSTRACT

Since 2006, farmers in England have received new recommendations on best practice to manage lameness in sheep through a range of knowledge exchange activities. The adoption of each recommendation varied, but in 2013 approximately 50% of farmers reported treating all lame sheep within 3 days of onset of lameness (prompt treatment), 41% did not practice routine foot trimming, 50% culled sheep that had been lame and 14% vaccinated against footrot; all recommended best practices. The aim of this study was to investigate the prevalence of lameness in ewes in England from 2013 to 2015 and to identify changes in practice to manage lameness between 2013 and 2015 and the population attributable fraction for these managements. A longitudinal study with a cohort of 154 English sheep farmers was run for three years, farmers completed questionnaires on lameness in their flock for the previous 12 months in 2013, 2014 and 2015. The geometric mean prevalence of lameness in ewes was 4.1% in 2015, significantly higher than 3.3% and 3.2% for the same 128 farmers who provided data in both 2013 and 2014. Between 2013 and 2015 there was a significant reduction in farmers practising prompt treatment (50.6%-28.6%) but an increase in not practising routine foot trimming (40.9%-79.2%), culling sheep that had been lame (49.4%-81.8%), and vaccinating against footrot (14.3%-29.2%). Not practising prompt treatment, ≥5% of sheep feet bleeding during routine foot trimming, vaccinating ewes for <6 years or not vaccinating at all, and other flocks mixing with the flock, were associated with a significantly higher flock prevalence of lameness. Culling sheep that had been lame was not associated with prevalence of lameness. The population attributable fractions (PAFs) for not vaccinating for>5 years, not treating lame sheep promptly, ≥5% of sheep feet bleeding during routine foot trimming, and mixing of flocks were 34.5%, 25.3%, 2.9% and 2.4%. In 2013, when 50% of farmers used prompt treatment, the PAF for not using prompt treatment was only 13.3%. We conclude that the change in practice by these farmers towards flock-level managements and a reduction in individual prompt treatment of lame sheep negatively impacted the prevalence of lameness in sheep. This change occurred despite the evidence that prompt treatment of lame sheep is highly effective at reducing the prevalence of lameness in sheep flocks and is an example of cognitive dissonance.


Subject(s)
Animal Husbandry/standards , Foot Rot/prevention & control , Lameness, Animal/epidemiology , Sheep Diseases/therapy , Animals , England/epidemiology , Farmers , Female , Foot Rot/epidemiology , Lameness, Animal/therapy , Longitudinal Studies , Sheep
8.
Sci Rep ; 9(1): 14429, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594981

ABSTRACT

Sites of persistence of bacterial pathogens contribute to disease dynamics of bacterial diseases. Footrot is a globally important bacterial disease that reduces health and productivity of sheep. It is caused by Dichelobacter nodosus, a pathogen apparently highly specialised for feet, while Fusobacterium necrophorum, a secondary pathogen in footrot is reportedly ubiquitous on pasture. Two prospective longitudinal studies were conducted to investigate the persistence of D. nodosus and F. necrophorum in sheep feet, mouths and faeces, and in soil. Molecular tools were used to detect species, strains and communities. In contrast to the existing paradigm, F. necrophorum persisted on footrot diseased feet, and in mouths and faeces; different strains were detected in feet and mouths. D. nodosus persisted in soil and on diseased, but not healthy, feet; similar strains were detected on both healthy and diseased feet of diseased sheep. We conclude that D. nodosus and F. necrophorum depend on sheep for persistence but use different strategies to persist and spread between sheep within and between flocks. Elimination of F. necrophorum would be challenging due to faecal shedding. In contrast D. nodosus could be eliminated if all footrot-affected sheep were removed and fade out of D. nodosus occurred in the environment before re-infection of a foot.


Subject(s)
Bacterial Infections/microbiology , Foot Rot/microbiology , Sheep Diseases/microbiology , Animals , Bacterial Infections/pathology , Bacterial Infections/veterinary , Dichelobacter nodosus/pathogenicity , Foot Rot/pathology , Fusobacterium Infections/microbiology , Fusobacterium Infections/pathology , Fusobacterium Infections/veterinary , Fusobacterium necrophorum/pathogenicity , Hoof and Claw/microbiology , Hoof and Claw/pathology , Sheep/genetics , Sheep/microbiology , Sheep Diseases/pathology , Virulence/genetics
9.
Microbiome ; 7(1): 120, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31464644

ABSTRACT

BACKGROUND: Coastal environments are dynamic and rapidly changing. Living organisms in coastal environments are known to synthesise large quantities of organic osmolytes, which they use to cope with osmotic stresses. The organic osmolyte glycine betaine (GBT) is ubiquitously found in marine biota from prokaryotic Bacteria and Archaea to coastal plants, marine protozoa, and mammals. In intertidal coastal sediment, GBT represents an important precursor of natural methane emissions and as much as 90% of total methane production in these ecosystems can be originated from methanogenesis from GBT and its intermediate trimethylamine through microbial metabolism. RESULTS: We set out to uncover the microorganisms responsible for methanogenesis from GBT using stable isotope labelling and metagenomics. This led to the recovery of a near-complete genome (2.3 Mbp) of a novel clostridial bacterium involved in anaerobic GBT degradation. Phylogenetic analyses of 16S rRNA gene, functional marker genes, and comparative genomics analyses all support the establishment of a novel family Candidatus 'Betainaceae' fam. nov. in Clostridiales and its role in GBT metabolism. CONCLUSIONS: Our comparative genomes and metagenomics analyses suggest that this bacterium is widely distributed in coastal salt marshes, marine sediments, and deep subsurface sediments, suggesting a key role of anaerobic GBT metabolism by this clostridial bacterium in these ecosystems.


Subject(s)
Bacteria , Betaine/metabolism , Geologic Sediments/microbiology , Methane/metabolism , Seawater/microbiology , Wetlands , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Metagenomics , Osmosis , Phylogeny , RNA, Ribosomal, 16S/genetics , United Kingdom
10.
Water Res ; 155: 444-454, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30861382

ABSTRACT

Anaerobic digestion of organic matter is the major route of biomethane production. However, in the presence of sulfate, sulfate-reducing bacteria (SRB) typically outcompete methanogens, which may reduce or even preclude methane production from sulfate-containing wastewaters. Although sulfate-reduction and methanogenesis can occur simultaneously, our limited understanding of the microbiology of anaerobic digesters treating sulfate-containing wastewaters constrains improvements in the production of methane from these systems. This study tested the effects of carbon sources and chemical oxygen demand-to-sulfate ratio (COD/SO42-) on the diversity and interactions of SRB and methanogens in an anaerobic digester treating a high-sulfate waste stream. Overall, the data showed that sulfate removal and methane generation occurred in varying efficiencies and the carbon source had limited effect on the methane yield. Importantly, the results demonstrated that methanogenic and SRB diversities were only affected by the carbon source and not by the COD/SO42- ratio.


Subject(s)
Methane , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Sulfates
11.
ISME J ; 13(2): 277-289, 2019 02.
Article in English | MEDLINE | ID: mdl-30206424

ABSTRACT

Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment.


Subject(s)
Choline/metabolism , Deltaproteobacteria/metabolism , Geologic Sediments/microbiology , Methane/metabolism , Methanosarcinaceae/metabolism , Wetlands , Deltaproteobacteria/genetics , High-Throughput Nucleotide Sequencing , Metagenome , Metagenomics , Methanosarcinaceae/genetics , Methylamines/metabolism , RNA, Ribosomal, 16S/genetics
12.
Environ Microbiol Rep ; 11(2): 147-154, 2019 04.
Article in English | MEDLINE | ID: mdl-30346661

ABSTRACT

Previous studies on microbes associated with deterioration of cultural heritage (CH) stoneworks have revealed a diverse microbiota adapted to stresses such as low nutrients, aridity and high salinity, temperatures and radiation. However, the function of these pioneer microbial communities is still unclear. This study examines bacterial and archaeal diversity in exfoliated and dark encrustation sandstone from Portchester Castle (UK) by 16S rRNA and functional gene analyses. Bacterial and archaeal communities from the exfoliated sites were distinctly different from the dark encrustation. Detected genera were linked to extreme environmental conditions, various potential functional roles and degradation abilities. From these data it was possible to reconstruct almost complete nitrogen and sulfur cycles, as well as autotrophic carbon fixation and mineral transformation processes. Analysis of RNA showed that many of the detected genera in these nutrient cycles were probably active in situ. Thus, CH stonework microbial communities are highly diverse and potentially self-sustaining ecosystems capable of cycling carbon, nitrogen and sulfur as well as the stone biodeterioration processes that lead to alterations such as exfoliation and corrosion. These results highlight the importance of diversity and internal recycling capacity in the development of microbial communities in harsh and low energy systems.


Subject(s)
Architecture , Culture , Ecosystem , Geologic Sediments/microbiology , Microbiota/physiology , Nutrients/metabolism , Archaea/classification , Archaea/genetics , Archaea/metabolism , Autotrophic Processes , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Carbon/metabolism , Geologic Sediments/chemistry , Minerals/metabolism , Nitrogen/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfur/metabolism
13.
Pathog Dis ; 76(1)2018 02 01.
Article in English | MEDLINE | ID: mdl-29342260

ABSTRACT

Debate regarding the co-existence of Staphylococcus aureus and Pseudomonas aeruginosa in wounds remains contentious, with the dominant hypothesis describing a situation akin to niche partitioning, whereby both microorganisms are present but occupy distinct regions of the wound without interacting. In contrast, we hypothesised that these microorganisms do interact during early co-colonisation in a manner beneficial to both bacteria. We assessed competitive interaction between S. aureus and P. aeruginosa in biofilm cultured for 24-72 h and bacterial aggregates analogous to those observed in early (<24 h) biofilm formation, and interaction with human keratinocytes. We observed that S. aureus predominated in biofilm and non-attached bacterial aggregates, acting as a pioneer for the attachment of P. aeruginosa. We report for the first time that S. aureus mediates a significant (P < 0.05) increase in the attachment of P. aeruginosa to human keratinocytes, and that P. aeruginosa promotes an invasive phenotype in S. aureus. We show that co-infected keratinocytes exhibit an intermediate inflammatory response concurrent with impaired wound closure that is in keeping with a sustained proinflammatory response which allows for persistent microbial colonisation. These studies demonstrate that, contrary to the dominant hypothesis, interactions between S. aureus and P. aeruginosa may be an important factor for both colonisation and pathogenicity in the chronic infected wound.


Subject(s)
Biofilms/growth & development , Microbial Interactions , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development , Bacterial Adhesion , Cell Line , Coinfection/microbiology , Coinfection/pathology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Keratinocytes/immunology , Keratinocytes/microbiology , Models, Biological , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/physiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/physiology
14.
Vet Microbiol ; 213: 108-113, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29291993

ABSTRACT

Fusobacterium necrophorum is associated with various diseases in humans and animals. Reservoirs (sites where the pathogen persists in the absence of disease) of F. necrophorum are believed to be present in healthy individuals e.g. tonsillar epithelium, or their environment e.g. soil, but for most diseases the reservoir sites are unknown. Strain typing of F. necrophorum would facilitate linking specific reservoirs with a specific disease. The aim of this study was to develop multiple locus variable number tandem repeat analysis (MLVA) as a strain typing technique for F. necrophorum, and to test the use of this scheme to analyse both isolates and mixed communities of bacteria. Seventy-three tandem repeat regions were identified in the F. necrophorum genome; three of these loci were suitable and developed as a MLVA scheme. The MLVA scheme was sensitive, specific, and discriminatory for both isolates and communities of F. necrophorum. The MLVA scheme strain typed 46/52F. necrophorum isolates including isolates of both subspecies and from different countries, host species and sample sites within host. There were 12 unique MLVA strain types that clustered by subspecies. The MLVA scheme characterised the F. necrophorum community in DNA from 32/49 foot- and 28/33 mouth swabs from sheep. There were 17 community types in total. In 31/32 foot swabs, single strains of F. necrophorum were detected while in the 28 mouth swabs there were up to a maximum of 8 strains of F. necrophorum detected. The results demonstrate the potential for this method to elucidate reservoirs of F. necrophorum.


Subject(s)
Fusobacterium Infections/veterinary , Fusobacterium necrophorum/isolation & purification , Minisatellite Repeats/genetics , Sheep Diseases/microbiology , Animals , Bacterial Typing Techniques/veterinary , Fusobacterium Infections/microbiology , Fusobacterium necrophorum/genetics , Molecular Typing/veterinary , Sheep
15.
Genome Announc ; 5(48)2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29192089

ABSTRACT

Pseudomonas aeruginosa ATCC 9027 was isolated in 1943 from a case of otitis externa and is commonly employed as a quality control strain for sterility, assessment of antibiofilm agents, and in vitro study of wound infection. Here, we present the 6.34-Mb draft genome sequence and highlight some pertinent genes that are associated with virulence.

16.
Front Vet Sci ; 4: 58, 2017.
Article in English | MEDLINE | ID: mdl-28484704

ABSTRACT

Footrot causes 70-90% of lameness in sheep in Great Britain. With approximately 5% of 18 million adult sheep lame at any one time, it costs the UK sheep industry £24-84 million per year. The Gram-negative anaerobe Dichelobacter nodosus is the causative agent, with disease severity influenced by bacterial load, virulence, and climate. The aim of the current study was to characterize strains of D. nodosus isolated by culture of swabs from healthy and diseased feet of 99 ewes kept as a closed flock over a 10-month period and investigate persistence and transmission of strains within feet, sheep, and the flock. Overall 268 isolates were characterized into strains by serogroup, proline-glycine repeat (pgr) status, and multi-locus variable number tandem repeat analysis (MLVA). The culture collection contained 87 unique MLVA profiles and two major MLVA complexes that persisted over time. A subset of 189 isolates tested for the virulence marker aprV2 were all positive. The two MLVA complexes (76 and 114) comprised 62 and 22 MLVA types and 237 and 28 isolates, respectively. Serogroups B, and I, and pgrB were associated with MLVA complex 76, whereas serogroups D and H were associated with MLVA complex 114. We conclude that within-flock D. nodosus evolution appeared to be driven by clonal diversification. There was no association (P > 0.05) between serogroup, pgr, or MLVA type and disease state of feet. Strains of D. nodosus clustered within sheep and were transmitted between ewes over time. D. nodosus was isolated at more than one time point from 21 feet, including 5 feet where the same strain was isolated on two occasions at an interval of 1-33 weeks. Collectively, our results indicate that D. nodosus strains persisted in the flock, spread between sheep, and possibly persisted on feet over time.

18.
Nat Commun ; 7: 13451, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905393

ABSTRACT

Oceanic oxygen minimum zones are strong sources of the potent greenhouse gas N2O but its microbial source is unclear. We characterized an exponential response in N2O production to decreasing oxygen between 1 and 30 µmol O2 l-1 within and below the oxycline using 15NO2-, a relationship that held along a 550 km offshore transect in the North Pacific. Differences in the overall magnitude of N2O production were accounted for by archaeal functional gene abundance. A one-dimensional (1D) model, parameterized with our experimentally derived exponential terms, accurately reproduces N2O profiles in the top 350 m of water column and, together with a strong 45N2O signature indicated neither canonical nor nitrifier-denitrification production while statistical modelling supported production by archaea, possibly via hybrid N2O formation. Further, with just archaeal N2O production, we could balance high-resolution estimates of sea-to-air N2O exchange. Hence, a significant source of N2O, previously described as leakage from bacterial ammonium oxidation, is better described by low-oxygen archaeal production at the oxygen minimum zone's margins.


Subject(s)
Archaea/genetics , Archaea/metabolism , Genes, Archaeal , Nitrous Oxide/metabolism , Oxygen/metabolism , Air , Isotope Labeling , Linear Models , Models, Biological , Nitrogen Isotopes , Nonlinear Dynamics , Pacific Ocean , Water
19.
Environ Microbiol ; 18(9): 2886-98, 2016 09.
Article in English | MEDLINE | ID: mdl-26404097

ABSTRACT

Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease.


Subject(s)
Choline/metabolism , Proteus mirabilis/metabolism , Anaerobiosis , Lyases/genetics , Mutagenesis , Proteus mirabilis/genetics , Proteus mirabilis/growth & development , Proteus mirabilis/ultrastructure
20.
Microb Genom ; 2(9): e000080, 2016 09.
Article in English | MEDLINE | ID: mdl-28785417

ABSTRACT

Existing metagenome datasets from many different environments contain untapped potential for understanding metabolic pathways and their biological impact. Our interest lies in the formation of trimethylamine (TMA), a key metabolite in both human health and climate change. Here, we focus on bacterial degradation pathways for choline, carnitine, glycine betaine and trimethylamine N-oxide (TMAO) to TMA in human gut and marine metagenomes. We found the TMAO reductase pathway was the most prevalent pathway in both environments. Proteobacteria were found to contribute the majority of the TMAO reductase pathway sequences, except in the stressed gut, where Actinobacteria dominated. Interestingly, in the human gut metagenomes, a high proportion of the Proteobacteria hits were accounted for by the genera Klebsiella and Escherichia. Furthermore Klebsiella and Escherichia harboured three of the four potential TMA-production pathways (choline, carnitine and TMAO), suggesting they have a key role in TMA cycling in the human gut. In addition to the intensive TMAO-TMA cycling in the marine environment, our data suggest that carnitine-to-TMA transformation plays an overlooked role in aerobic marine surface waters, whereas choline-to-TMA transformation is important in anaerobic marine sediments. Our study provides new insights into the potential key microbes and metabolic pathways for TMA formation in two contrasting environments.


Subject(s)
Actinobacteria/genetics , Data Mining , Ecosystem , Gastrointestinal Microbiome/genetics , Metagenomics , Methylamines/metabolism , Proteobacteria/genetics , Actinobacteria/enzymology , Geologic Sediments/microbiology , Humans , Oxidoreductases, N-Demethylating/genetics , Proteobacteria/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...