Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5904, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003303

ABSTRACT

Nuclear magnetic resonance (NMR) is fundamental in the natural sciences, from chemical analysis and structural biology, to medicine and physics. Despite its enormous achievements, one of its most severe limitations is the low sensitivity, which arises from the small population difference of nuclear spin states. Methods such as dissolution dynamic nuclear polarization and parahydrogen induced hyperpolarization can enhance the NMR signal by several orders of magnitude, however, their intrinsic limitations render multidimensional hyperpolarized liquid-state NMR a challenge. Here, we report an instrumental design for 9.4 Tesla liquid-state dynamic nuclear polarization that enabled enhanced high-resolution NMR spectra in one and two-dimensions for small molecules, including drugs and metabolites. Achieved enhancements of up to two orders of magnitude translate to signal acquisition gains up to a factor of 10,000. We show that hyperpolarization can be transferred between nuclei, allowing DNP-enhanced two-dimensional 13C-13C correlation experiments at 13C natural abundance. The enhanced sensitivity opens up perspectives for structural determination of natural products or characterization of drugs, available in small quantities. The results provide a starting point for a broader implementation of DNP in liquid-state NMR.

2.
J Magn Reson ; 356: 107561, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837749

ABSTRACT

We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.

3.
Solid State Nucl Magn Reson ; 109: 101685, 2020 10.
Article in English | MEDLINE | ID: mdl-32932182

ABSTRACT

Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 â€‹kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected heteronuclear correlation (idHETCOR) experiments on 13C, 15N, 113Cd and 89Y nuclei in functionalized mesoporous silica, CdS nanoparticles, and Y2O3 nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP polarization transfer efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For 89Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D89Y-detected CP experiment performed with a 3.2-mm rotor.

4.
Solid State Nucl Magn Reson ; 100: 63-69, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30965254

ABSTRACT

The development of new, high-frequency solid-state diode sources capable of operating at 263 GHz, together with an optimized stator design for improved millimeter-wave coupling to the NMR sample, have enabled low-power DNP experiments at 263 GHz/400 MHz. With 250 mW output power, signal enhancements as high as 120 are achieved on standard samples - approximately 1/3 of the maximal enhancement available with high-power gyrotrons under similar conditions. Diode-based sources have a number of advantages over vacuum tube devices: they emit a pure mode, can be rapidly frequency-swept over a wide range of frequencies, have reproducible output power over this range, and have excellent output stability. By virtue of their small size, low thermal footprint, and lack of facility requirements, solid-state diodes are also considerably cheaper to operate and maintain than high-power vacuum tube devices. In light of these features, and anticipating further improvements in terms of available output power, solid-state diodes are likely to find widespread use in DNP and contribute to further advances in the field.

5.
J Magn Reson ; 302: 43-49, 2019 05.
Article in English | MEDLINE | ID: mdl-30953925

ABSTRACT

We consider the geometry of a radially irradiated microwave beam in MAS DNP NMR probes and its impact on DNP enhancement. Two related characteristic features are found to be relevant: (i) the focus of the microwave beam on the DNP MAS sample and (ii) the microwave magnetic field magnitude in the sample. We present a waveguide coupler setup that enables us to significantly improve beam focus and field magnitude in 1.3 mm MAS DNP probes at a microwave frequency of 263 GHz, which results in an increase of the DNP enhancement by a factor of 2 compared to previous standard hardware setups. We discuss the implications of improved coupling and its potential to enable cutting-edge applications, such as pulsed high-field DNP and the use of low-power solid-state microwave sources.

6.
Solid State Nucl Magn Reson ; 100: 70-76, 2019 08.
Article in English | MEDLINE | ID: mdl-30995597

ABSTRACT

Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T1 relaxation, microwave ON versus OFF signal intensities and DNP effect. The data are suggestive that for membranes the speed of cooling has a pronounced effect on the membrane properties and concomitantly the distribution of biradicals within the sample.

7.
J Am Chem Soc ; 140(41): 13340-13349, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30253097

ABSTRACT

Dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) has developed into an invaluable tool for the investigation of a wide range of materials. However, the sensitivity gain achieved with many polarizing agents suffers from an unfavorable field and magic angle spinning (MAS) frequency dependence. We present a series of new hybrid biradicals, soluble in organic solvents, that consist of an isotropic narrow electron paramagnetic resonance line radical, α,γ-bisdiphenylene-ß-phenylallyl (BDPA), tethered to a broad line nitroxide. By tuning the distance between the two electrons and the substituents at the nitroxide moiety, correlations between the electron-electron interactions and the electron spin relaxation times on one hand and the DNP enhancement factors on the other hand are established. The best radical in this series has a short methylene linker and bears bulky phenyl spirocyclohexyl ligands. In a 1.3 mm prototype DNP probe, it yields enhancements of up to 185 at 18.8 T (800 MHz 1H resonance frequency) and 40 kHz MAS. We show that this radical gives enhancement factors of over 60 in 3.2 mm sapphire rotors at both 18.8 and 21.1 T (900 MHz 1H resonance frequency), the highest magnetic field available today for DNP. The effect of the rotor size and of the microwave irradiation inside the MAS rotor is discussed. Finally, we demonstrate the potential of this new series of polarizing agents by recording high field 27Al and 29Si DNP surface enhanced NMR spectra of amorphous aluminosilicates and 17O NMR on silica nanoparticles.

8.
J Magn Reson ; 284: 20-32, 2017 11.
Article in English | MEDLINE | ID: mdl-28946058

ABSTRACT

We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.

9.
J Phys Chem B ; 119(46): 14574-83, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26487390

ABSTRACT

Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h.


Subject(s)
Lipid Bilayers , Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Magnetic Resonance Spectroscopy
10.
J Magn Reson ; 257: 51-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26073599

ABSTRACT

The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

11.
J Am Chem Soc ; 136(44): 15711-8, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25285480

ABSTRACT

There is currently great interest in understanding the limits on NMR signal enhancements provided by dynamic nuclear polarization (DNP), and in particular if the theoretical maximum enhancements can be achieved. We show that over a 2-fold improvement in cross-effect DNP enhancements can be achieved in MAS experiments on frozen solutions by simply incorporating solid particles into the sample. At 9.4 T and ∼105 K, enhancements up to εH = 515 are obtained in this way, corresponding to 78% of the theoretical maximum. We also underline that degassing of the sample is important to achieve highest enhancements. We link the amplification effect to the dielectric properties of the solid material, which probably gives rise to scattering, diffraction, and amplification of the microwave field in the sample. This is substantiated by simulations of microwave propagation. A reduction in sample heating at a given microwave power also likely occurs due to reduced dielectric loss. Simulations indicate that the microwave field (and thus the DNP enhancement) is inhomogeneous in the sample, and we deduce that in these experiments between 5 and 10% of the solution actually yields the theoretical maximum signal enhancement of 658. The effect is demonstrated for a variety of particles added to both aqueous and organic biradical solutions.

12.
Biophys J ; 99(7): 2336-43, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20923669

ABSTRACT

NMR spectroscopy is a powerful tool for detection and characterization of chemical compounds in biological systems. Its application in pharmaceutical studies in cell cultures, however, has been hampered by the enormous technical challenges in separating intra- from extracellular amounts of one substance. We introduce a novel approach to separate intra- from extracellular NMR signal based on the detection of intermolecular zero-quantum coherences in presence of a chemical shift agent. In a sample of large cells in culture, the investigation of cellular uptake of pharmacological substances becomes feasible. The addition of 10 mM Tm-DOTP to a suspension of 100 Xenopus laevis oocytes resulted in sufficient separation of resonance frequencies between intra- and extracellular water. Upon selective excitation of either intra- or extracellular water signal, only intra- or extracellular components were observed, respectively. The presented localization technique provides intrinsic averaging over a large number of cells, resulting in a significant signal gain. The method works on standard NMR spectrometers, which are available at most scientific research institutions today. On a high-resolution NMR system with a cryoprobe, a 20-fold sensitivity gain was observed as compared to conventionally localized NMR spectroscopy of a single X. laevis oocyte on dedicated NMR microscopes.


Subject(s)
Biological Factors/chemistry , Biological Factors/isolation & purification , Extracellular Space/chemistry , Intracellular Space/chemistry , Magnetic Resonance Spectroscopy/methods , Oocytes/metabolism , Animals , Choline , Oocytes/cytology , Solvents , Xenopus laevis
13.
Vet J ; 182(2): 215-22, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19709914

ABSTRACT

The aim of this study was to evaluate the ability of a 17.6 Tesla magnetic resonance (MR) microscope to determine external and internal structures and three-dimensional (3D) volume rendering of premature bovine brain tissue. Two bovine embryos (Carnegie-stages 16 and 21) were examined. 3D magnetic resonance imaging (MRI) was performed with a high field MR-scanner at a field strength of 17.6 Tesla. Images with isotropic nominal resolutions up to 39.1 microm were acquired. The MR images corresponded very well with histological slices. 3D virtual models of the embryonic brain were easily produced in a relatively short time and the high field scanner provided highly detailed images of formalin fixed brain tissue. Manual segmentation and automatic volume rendering is a valuable tool for the fast generation of 3D brain models and, to some degree, can replace conventional techniques in comparative embryology.


Subject(s)
Brain/embryology , Cattle/embryology , Magnetic Resonance Imaging/veterinary , Animals , Female , Magnetic Resonance Imaging/methods , Pregnancy
14.
Arthropod Struct Dev ; 36(2): 123-33, 2007 Jun.
Article in English | MEDLINE | ID: mdl-18089093

ABSTRACT

The postpharyngeal gland has long been thought to occur only in ants. Here we characterize, by use of light and electron microscopy as well as 3D reconstruction based on nuclear magnetic resonance (NMR) imaging data, a large cephalic gland reservoir of males of a solitary digger wasp, the European beewolf, Philanthus triangulum. Several lines of evidence suggest that this reservoir is a postpharyngeal gland. The gland reservoir originates from the posterior part of the pharynx and consists of two pairs of unbranched tubular structures that occupy a large portion of the head capsule. Its wall is composed of a unicellular epithelium that is lined by a cuticle. The gland contains a blend of hydrocarbons and compounds with functional groups, and we show that the hydrocarbon fraction of the pheromone is congruent with the hydrocarbons on the cuticle. We discuss the implications of our findings for the evolution of the postpharyngeal gland in ants.


Subject(s)
Wasps/anatomy & histology , Animals , Biological Evolution , Male , Social Behavior , Wasps/genetics
15.
Anal Chem ; 79(7): 2708-13, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17319646

ABSTRACT

Whereas the hyphenation of gas chromatography (GC) with mass spectrometry is of great importance, little is known about the coupling to nuclear magnetic resonance spectroscopy (NMR). The investigation of this technique is an attractive proposition because of the valuable information given by NMR on molecular structure. The experiments shown here are to our knowledge the first hyphenating capillary GC to microcoil NMR. In contrast to liquids, gases have rarely been investigated by NMR, mainly due to the experimental difficulties in handling gases and the low signal-to-noise-ratio (SNR) of the NMR signal obtained at atmospheric pressure. With advances in NMR sensitivity (higher magnetic fields and solenoidal microprobes), this limitation can be largely overcome. In this paper, we describe the use of a custom-built solenoidal NMR microprobe with an active volume of 2 microL for the NMR detection of several compounds at 400 MHz, first in a mixture, and then with full coupling to capillary GC to identify them separately. The injected amounts of each analyte in the hyphenated experiments are in the range of 15-50 micromol, resulting in reasonable SNR for sample masses of 1-2 microg.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Acetone/analysis , Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Ether/analysis , Furans/analysis , Methylene Chloride/analysis , Protons , Sensitivity and Specificity
16.
Magn Reson Med ; 56(4): 927-31, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16941621

ABSTRACT

The effects of chemical fixation are known to alter MR parameters, such as relaxation times and the apparent diffusion coefficient (ADC) of water. It is often assumed that such changes are reversible after samples have been reimmersed in a buffer solution for a sufficient period of time. In this study we characterize the changes associated with fixation of single Xenopus laevis oocytes and their subsequent reimmersion in buffer. Substantial reductions in both T(1) and T(2) values were measured for all compartments of the cell after fixation, with the cytoplasm showing larger changes than the nucleus. After reimmersion in buffer, there were small but statistically significant differences in MR parameters between fresh and reimmersed cells. Experiments with a gadolinium (Gd) contrast agent showed evidence of irreversible changes in the permeability of cellular membranes to small molecules.


Subject(s)
Cell Membrane/metabolism , Magnetic Resonance Spectroscopy/methods , Oocytes/metabolism , Tissue Fixation/methods , Analysis of Variance , Animals , Biological Transport , Contrast Media/pharmacokinetics , Formaldehyde/chemistry , Organometallic Compounds/pharmacokinetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...